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Abstract:
The early identification and classification of common faults

in rotating drive systems, such as bearings and gears, are
crucial for early fault detection and maintenance, preventing
severe damage to the system. This paper introduces a cost-
effective method to address this issue, based on extracting
time-domain features from vibration signals obtained from
sensors, combined with the Particle Swarm Optimization
and machine learning algorithms to reduce the number of
features required for classification. The approach aims to
minimize computational complexity while maintaining excep-
tionally high accuracy. The proposed method is validated on
three datasets, demonstrating its effectiveness and reliability.
Keywords:
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1. Introduction

Rotating machinery plays an important role in indus-
trial fields [1][2][3]. During operation, issues such as gear
chipping or damage to the inner or outer surfaces of the
bearings can easily occur, leading to excessive system vi-
bration and reduced accuracy. If these damages are not
detected and addressed early, they can cause severe harm
to the machinery, resulting in high repair costs and po-
tential risks to users. Many solutions have been studied
for the early detection of these damages, mostly through
time series signal from vibration sensors [4][5][6]. Wang et
al [5] used Convolution Neural Network (CNN) with Effi-
cient Channel Attention (ECA), testing on Case Western
Reserve Univerity (CWRU) bearing dataset and South-

east University (SEU) gearbox datasets, achieved excel-
lent classification results under noise-free conditions, but
the qualities decreased when the signals were augmented
with Gaussian white noise. Shao et al [6] proposed a
Deep CNN combined with a pre-trained model, investi-
gated CWRU dataset and gearbox dataset obtained form
the Drivetrain Dynamic Simulator, although good results
were also achieved, but the model’s performance was worse
when it was trained from scratch instead of from the pre-
trained model. Tran et al [7] used a pre-trained Deep
Neural Network to extract high level features, then a tra-
ditional machine learning classifiers like Support Vector
Machine (SVM), k-Nearest Neighbor (kNN) or Random
Forest (RF) Classifier was used these features for fur-
ther classification. This approach achieved impressive re-
sults with Paderborn University (PU) bearing dataset,
CWRU dataset and Machinery Failure Prevention Tech-
nology (MFPT) vibration dataset. Raj et al [8] proposed
a 2D-CNN model combined with principal component
analysis (PCA), achieved above 98% accuracy on CWRU
dataset. The aforementioned methods, although achieving
great results but required high computational workload.

There are also many studies on conventional algorithms
for this problem. Shen et al [9] used CWRU to simu-
lation the improved grey wolf optimizer (IGWO) com-
bined with SVM, and get the accuracy of 98.75%. Wang
and Du [10] tested an fault diagnosis approach northern
goshawk optimization (NGO) - SVM and modified hierar-
chical fluctuation dispersion entropy of tan-sigmoid map-
ping (MHFDE_TANSIG) on the UConn and SEU gear
dataset, obtained an average accuracy of 97.25%.

This study presents a method that combines time se-
ries features extraction from sensor signals over time with



one of two widely used machine learning algorithms, Sup-
port Vector Machine and Random Forest Classifier, inte-
grates the Particle Swarm Optimization (PSO) algorithm
to reduce the number of features required for classifica-
tion, aiming to decrease computational cost. In order to
evaluate the effectiveness of the proposed methods, three
datasets were investigated: CWRU bearing datasets [11],
University of Connecticut (UOC) gear fault datasets [12]
and SEU gearbox datasets [13], achieved excellent classi-
fication results with accuracy above 99%. The proposed
method also demonstrates robustness in the case where
the signal was augmented by Gaussian white noise.

2. Proposed method

2.1 Time series features extraction

To facilitate classification and fault identification, the
time-domain signals obtained from the sensors were first
divided into samples consisting of N points. Then, the
time-domain features of these samples were extracted. In
addition to common features such as maximum, minimum,
root mean square, mean, standard deviation, variance, en-
ergy, and data range, the following features also need to
be used:

• Skewness measures the extent of the asymmetry of the
distribution curve, compared with the normal distri-
bution, and it can be calculated in many ways. The
simplest formula is Pearson’s second skewness one,
also known as median skewness. Kurtosis character-
izes how peaked or flatten of a normal-like distribu-
tion, larger kurtosis means sharper peak of the distri-
bution curve. Crest factor is defined as the ratio of
the peak value to the rms value, it illustrates how ex-
treme of a waveform’s peak. Crest factor 1 shows that
there is no peak, such as square wave, while higher
crest factor indicates higher peak. Form factor is the
ratio of the rms value to the arithmetic mean. A pure
sinusoidal waveform has a form factor of 1.11.

• Quartile and Inter-quartile range: the first quartile
Q1, the second quartile Q2 (also known as the me-
dian) and the third quartile Q3 are the points where
25%, 50% and 75% of data are below these points,
respectively. The inter-quartile range (IQR) is the
distance between Q3 and Q1.

• Autocorrelation: a lag-k autocorrelation rk is a corre-
lation between a time series and a time-shifted version

by k time steps of itself:

rk =

∑N−k
i=1 (xi − x̄)(xi+k − x̄)∑N

i=1(xi − x̄)2
(1)

• Mean difference (MD) of a time series indicates the
average change between consecutive values and pro-
vides insights into the trend and smoothness of the
series. Second order difference mean (SODM) of a
time series measures the average change of the MD,
and demonstrates the acceleration trends in the data.
Mean absolute deviation (MAD) measures the aver-
age absolute deviation of each value from the mean
of time series. MAD is a metric for assessing variabil-
ity of time series, but it is less sensitive to extremely
values compared to standard deviation.

• Coefficient of variation (CV) measures the standard
deviation as a percentage of the mean, a higher CV
shows a greater relative variability.

• Partial Autocorrelation Function (PACF) at lag k in-
dicates the direct association between a time series
and its past values at lag k, excluding the influence
of intermediate lags. It can be determined by Yule-
Walker equations or Durbin-Levinson algorithm.

• Augmented Dickey-Fuller (ADF) test is used to check
if a time series is stationary, it has two key values:
ADF statistic, which determines how strongly a time
series is stationary, and p-value, which is a probability
obtained by comparing the ADF statistic to Dickey-
Fuller tables.

• Hurst exponent measures the long term memory of
time series, its value ranges from 0 to 1, with the value
of 0.5 indicates that the series is purely stochastic.
There are many methods for estimating the Hurst ex-
ponent [14], in this paper, the classical rescaled range
method is used.

• The Dominant frequency refers to the frequency com-
ponent with the highest amplitude of a time series,
it represents the most significant oscillation present
in the data. Dominant frequency can be determined
by taking Fast Fourier Transform of the time series,
then identify the frequency with the highest ampli-
tude. Spectral density at peak frequency, P (fpeak),
demonstrates the power of a time series at its most
dominant frequency in the frequency domain.



• Seasonality strength (SS) is typically a measure of
how strong the periodic components are in a time se-
ries compared to its overall variability. It illustrates
the importance of seasonal pattern relative to other
source of variation such as trends or noise. Entropy
of seasonality (H) shows the uncertainty in the sea-
sonal pattern of a time series, also knows as Shannon
entropy. In order to calculate H, the power spectrum
P (fi) are computed first, then H can be obtained as:

H = −
∑

pi log2 pi (2)

where pi = P (fi)/
∑

P (fi) is the probability of each
frequency based on its power.

• Number of outliers quantifies how many data points
in a sample significantly deviate from the expected
pattern. Any point xi with a |Zi| > 3 is considered
an outlier, where Z is the z-score of that data point.

All of above features were used in this study to sup-
port the fault classification problem, serving as inputs of
machine learning algorithm after applying the Standard
Scaler (also known as z-score normalization):

X ′ =
X − µX

σX
(3)

where X is the original value of the feature, X ′ is the stan-
dardized value, µX and σX are the mean and the standard
deviation of the feature, respectively.

2.2 Support Vector Machine

Support Vector Machine (SVM) is a robust supervised
learning technique designed for both classification and re-
gression problems [15]. It works by identifying an op-
timal hyperplane that best separates data points into
different categories. This hyperplane is constructed to
maximize the separation margin, which refers to the dis-
tance between the nearest data points—known as support
vectors—of each class and the decision boundary. The dis-
tance between the hyperplane and the nearest data points
is called the margin.

When the data is linearly separable, the hyperplane can
be described as:

w · x+ b = 0 (4)
where w represents the weight vector, x denotes the input
feature vector, and b corresponds the bias term. In the
case of nonlinear problem, SVM utilize a technique called

the kernel trick to transform input data into a higher-
dimensional space, enabling linear separability. Com-
monly used kernel functions include the polynomial kernel,
radial basis function (RBF) kernel, and sigmoid kernel.

SVM is originally a binary classifier, however, for multi-
class classification, SVM can be extended using One-
versus-One or One-versus-All approaches. The former
method involves training a separate SVM classifier for
each pair of classes, for a dataset with n classes, n(n−1)/2
binary classifiers are required, then during prediction, each
classifier votes for a class, and the class with the most votes
is selected. The latter method, in the other hand, trains
one SVM classifier per class, treating it as positive and
all others as negative, then the classifier with the highest
confident score determines the class.

2.3 Random Forest Classifier

The Random Forest (RF) Classifier is an ensemble
learning algorithm based on decision trees, designed to
improve classification accuracy while reducing overfitting.
It was introduced by Leo Breiman [16] as an extension
of the CART (Classification and Regression Trees) algo-
rithm, which forms the foundation of individual trees in
the Random Forest. The CART model splits data at each
node using a criterion such as gini impurity or entropy,
ensuring that the resulting subgroups are as pure as pos-
sible.

Gini impurity ore entropy are use to quantified the like-
lihood that a randomly selected instance would be mis-
classified if it were assigned a label based on the class
distribution within a specific node:

gini = 1−
C∑
i=1

p2i

entropy = 1−
C∑
i=1

pi log2 pi

(5)

where pi is the proportion of class i instances in the
node, and C is the number of classes. Lower gini or en-
tropy values indicate purer nodes.

The RF trains multiple trees on different subsets of data
using bootstrap sampling (bagging) and aggregating their
predictions via majority voting for classification. Addi-
tionally, at each node, it selects a random subset of fea-
tures to determine the best split, reducing correlation be-
tween trees and improving generalization.



2.4 Particle Swarm Optimization

Inspired by swarm intelligence, Particle Swarm Opti-
mization (PSO) optimizes solutions by simulating the co-
operative movement of birds and fish in nature. It was in-
troduced by James Kennedy and Russell Eberhart in 1995
[17] as a computational method for optimizing nonlinear
functions. Each particle i in the swarm is represent by po-
sition xi, velocity vi, personal best position pi and global
best position g. The personal best and global best in PSO
are determined based on the fitness function F (x), which
is defined differently depending on the specific problem.

The velocity and position of each particle are adjusted
at every iteration based on the following equations:

w
(t+1)
i = wv

(t)
i + c1r1(pi − x

(t)
i ) + c2r2(g − x

(t)
i ) (6)

x
(t+1)
i = x

(t)
i + v

(t+1)
i (7)

where w is the inertia weight; c1, c2 are the acceleration
coefficients and r1, r2 are random numbers uniformly dis-
tributed in [0, 1]. The inertia weight w balances explo-
ration and exploitation. The algorithm runs for a fixed
number of iterations or until convergence.

For integrating PSO with SVM [18] or RF classifier,
in order to select useful feature [19], each particle of PSO
algorithm is a binary vector of length D, which is the num-
ber of features, a value of 1 means the feature is selected,
and 0 means it is ignored.

Each particle’s performance is evaluated using the clas-
sifier on the selected features, with the fitness function
maximizes classification accuracy while minimizing the
number of selected features:

F = α · accuracy − β · number of selected features
number of total features (8)

where α, β are weights controlling the trade-off between
accuracy and feature reduction. Particles update their
positions and velocities using (6), (7), and a sigmoid func-
tion converts velocity into a probability to decide whether
a feature is selected.

2.5 Complete Algorithm

The complete algorithm for fault classification is shown
in Fig. 1. First, the vibration signals are collected using
sensors placed at several positions in the rotating machine
system, then these time series are separated into samples
with a length of N points, in this study, N = 1024. A total

Vibration Signals

Samples of N-points

Features extraction

Training set Test set

Fit and transform with
Standard Scaler

Select features by PSO
combined with ML algorithm

Train the classifier with
selected features

Transform with
Standard Scaler

Evaluate the accuracy of the
classifiers

Select features similar to the
ones chosen in the training set

Data augmentation
(optional)

FIGURE 1. Flowchart for fault classification

of 31 time-domain features are extracted from the above
samples and stored as feature datasets for classification.

Since the data used for training the model is often lim-
ited, and using only the available data cannot fully eval-
uate models in cases where signals from vibration sensors
are affected by noise, this study also considers the case
where the signal is augmented with Gaussian white noise
w ∼ N (0, σ2

n) before extracting features, σn = η · σ where
η is called noise level or noise factor, σ is the standard
deviation of the original signal. Typically, the signal-to-
noise ratio (SNR-dB), which can be computed from η and
vice versa, is used more frequently than the noise level.

The feature datasets are split into training set and test
set, with the ratio of 75% and 25%, respectively. The
Standard Scaler, the algorithm for selecting features and
the classifiers, which are SVM or RF, use the training set
as input in order to train the model. The test set, in the
other hand, is used to evaluate the accuracy of the model,
with the selected features by PSO algorithm.

To assess the model’s effectiveness, a confusion matrix
should be utilized. This table compares actual labels with
predicted ones, offering a comprehensive breakdown of
correct and incorrect classifications. Key metrics which



can be derived form the confusion matrix, such as accu-
racy, precision, recall or F1-score can be useful for imbal-
anced datasets, where accuracy alone can be misleading.
However, the three case studies in this research use bal-
anced datasets, so the the confusion matrix and accuracy
metric are sufficient to evaluate the classification model.

3 Experimental verification

To verify the effectiveness of the proposed methods,
three datasets were examined.

3.1 Dataset

First, the CWRU bearing dataset [11] is one of the most
extensively used datasets for assessing algorithms designed
for fault diagnosis and detection in rotating machinery. It
was collected by the Bearing Data Center at Case West-
ern Reserve University, USA, and has been extensively uti-
lized in research related to machine learning, deep learning
and fault detection in mechanical systems. The dataset
was collected at 12 kHz or 48kHz using and electric motor
test rig equipped with accelerometers to measure vibra-
tion signals. Bearings were tested under various load con-
ditions, from 0 to 3HP and faults were created in different
size in diameter: 0.007, 0.014 and 0.021 inches. In this
study, only vibration signals at the drive end (DE) was
used. There were a total of 400 samples for each state,
which were randomly split into 300 samples for training
and 100 sample for testing.

Second, UOC gear fault dataset was collected by Uni-
versity of Connecticut [12], with the vibration signals sam-
pled at 20 kHz. In this dataset, nine distinct conditions
were applied to the pinions on the output shaft, include a
healthy state as well as eight fault states such as missing
tooth, root crack, spalling and chipping tip. There were
only 312 samples of each state in this dataset, which were
randomly split into 234 samples for training and 78 sam-
ple for testing. As stated in [4], this dataset in one of the
most challenging one to analyze, possibly due to the lim-
ited number of samples and requires careful preprocessing.

Finally, SEU dataset was provided by Southeast Uni-
versity [13], contained a bearing dataset and a gearbox
dataset. This study investigates the gearbox dataset, with
two kinds of working conditions at 20Hz - 0V and 30Hz
- 2V. There are ten working conditions, with a total of
1023 samples for each state. Just like the previous two
datasets, 75% of the samples, equivalent to 767 samples,

were used for training, and the remaining 25%, equivalent
to 256 samples, were used for testing.

3.2 Experimental results

First, the original signal is analyze without applying
Gaussian white noise. The models are trained using the
training set, and their performance is assessed based on
the test set’s accuracy, with results shown in Table 1.
Clearly, the PSO algorithm significantly reduces the num-
ber of features required—by nearly half—while still main-
taining an almost perfect accuracy.

TABLE 1. Accuracy of classification algorithms without noise

Dataset Algorithm Accuracy Number of features
CWRU PSO + SWM 99.00% 16
CWRU PSO + RF 99.80% 17
UOC PSO + SWM 99.00% 15
UOC PSO + RF 99.29% 15
SEU PSO + SWM 99.92% 13
SEU PSO + RF 99.88% 17

Second, the original signal is augmented with Gaussian
noise to evaluate the model’s adaptability under real-world
conditions. The accuracy is presented in Table 2 and
Fig. 2, corresponding to different noise levels, a smaller
SNR means higher noise levels. Even in cases of significant
noise, the models maintain an acceptable level of accuracy
across all scenarios. Notably, with the SEU dataset, accu-
racy remains unchanged even when the data is augmented
with Gaussian noise, whereas with the CWRU dataset, ac-
curacy only decreases slightly. The UOC dataset, on the
other hand, appears to be the most challenging to analyze,
possibly due to the limited number of training samples.

4 Conclusions

It can be concluded that the proposed classification
methods achieve perfect accuracy with a moderate num-
ber of required features, especially when a large amount
of training data is available. In cases with fewer data
samples, the accuracy remains acceptable. The strength
of the PSO algorithm is that it can be combined with
various machine learning and deep learning algorithms to
select suitable features for classification in different spe-
cific problems. This is especially useful when the original



TABLE 2. Accuracy of classification algorithms with noise

Dataset Algorithm Accuracy
SNR=0dB SNR=2dB SNR=4dB

CWRU PSO+SVM 96.20% 96.50% 97.60%
CWRU PSO+RF 97.90% 98.50% 98.60%
UOC PSO+SVM 84.76% 85.75% 93.87%
UOC PSO+RF 83.33% 84.05% 92.31%
SEU PSO+SVM 99.84% 99.65% 99.84%
SEU PSO+RF 99.80% 99.88% 99.92%
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FIGURE 2. Model accuracy under different SNR values

algorithm itself does not have a feature importance at-
tribute. This study primarily uses signals from a single
sensor channel. In the future, research can focus on com-
bining signals from multiple sensors, which will certainly
further improve classification results.
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