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Abstract:
This paper investigates the robust control problem for

Takagi-Sugeno (T-S) fuzzy systems subject to hybrid cyber-
attacks, encompassing both Denial-of-Service (DoS) attacks
and deception attacks. A novel dynamic memory-based event-
triggered mechanism (DMETM) is proposed, which incorpo-
rates not only the most recent triggering instant but also mul-
tiple historical triggering instants, with the specific number
of considered instants being determined by the system’s state.
Furthermore, a dynamic output feedback controller (DOFC)
is designed, and its parameters are derived by solving Lin-
ear Matrix Inequalities (LMIs) through the construction of an
appropriate Lyapunov function. The method guarantees the
closed-loop system’s asymptotic stability and meets the pre-
defined H∞ performance level γ. Finally, a rigorous proof is
mentioned to illustrate the absence of Zeno behavior in this
control scheme.
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1 Introduction

In recent years, T-S fuzzy systems have garnered signif-
icant attention in the control field due to their remarkable
approximation capabilities for complex nonlinear systems.
These systems have been extensively applied in various
practical engineering domains, including robotic manipu-

lators [1], mechatronic systems [2] and marine vehicles [3].
With the increasing integration of T-S fuzzy systems into
networked control systems and their deployment in critical
infrastructure as part of cyber-physical systems, the secu-
rity of these systems has become a paramount concern. In
[4], authors propose a resilient event-triggered H∞ filter-
ing approach for networked switched T-S fuzzy systems
under DoS attacks. A switching fuzzy filter is designed
to handle asynchronous system-filter modes caused by at-
tacks and ETS. Then, a security-based fuzzy model pre-
dictive control approach for discrete-time T-S fuzzy sys-
tems subjected to output deception attacks is proposed in
[5]. In this approach, dynamic output-feedback control is
employed and a worst-case optimization problem is formu-
lated to address system nonlinearity and mitigate the im-
pacts of deception attacks. In [6], the asynchronous event-
triggered control problem for switched T-S fuzzy systems
subjected to data injection attacks is investigated. The
study addresses the asynchronous switching behavior be-
tween subsystems and subcontrollers induced by sampled
switching signals and sufficient conditions are derived to
ensure exponential stability and performance of the sys-
tem under data injection attacks. It is noteworthy that
the aforementioned references primarily focus on individ-
ual types of cyber-attacks. The coexistence of different
attack types not only exacerbates the complexity of sys-
tem vulnerabilities but also necessitates the development
of advanced control mechanisms that can ensure system
stability and maintain desired performance under such ad-



verse conditions.
Communication resources are highly valuable for CPS,

over the past decade, researchers have proposed numer-
ous strategies to conserve these resources. Examples
include static event-triggered mechanisms [7], dynamic
event-triggered mechanisms [8], adaptive event-triggered
mechanisms [9], and resilient event-triggered mechanisms
[4]. Authors in [10] explore the development of event-
triggered controllers for positive T-S fuzzy systems in-
corporating Markovian stochastic time delays, proposing
a controller that switches at different event-triggered in-
stants and deriving design criteria through a Lyapunov
function to ensure system positivity and stability. The
criteria are solvable via linear programming, guarantee
a positive lower bound on inter-execution time to avoid
Zeno behavior. Compared to static event-triggered mech-
anism (SETM) and dynamic event-triggered mechanism
(DETM) further conserve communication resources by in-
troducing a non-negative internal dynamic variable, which
adaptively adjusts the triggering threshold based on real-
time system conditions. Subsequently, a novel DETM is
proposed in [11], featuring a specially designed threshold
parameter to optimize computational resource utilization.
The challenges of data dropouts, time delays, and envi-
ronmental disturbances are addressed through a hidden
Markov model, which is employed to represent the asyn-
chronization between the system and the controller. How-
ever, conventional ETM, whether they are static or adap-
tive, often rely solely on the last triggering instant and
the current sampling time and overlook the potential ad-
vantages of incorporating multiple previous triggering in-
stants, particularly in scenarios where cyber-attacks may
generate numerous false data points. This oversight can
lead to inefficient resource utilization and diminished sys-
tem performance. Consequently, this has prompted us to
consider dynamic DMETM. Taking into account all the
above factors, the key contributions of this study are out-
lined as follows:
1. In contrast to the work presented in [4], which ex-

clusively considers DoS attacks, and [5], which solely
addresses deception attacks, this paper investigates
a more comprehensive scenario where the system is
simultaneously subjected to both DoS and deception
attacks. The proposed controller demonstrates re-
duced conservatism compared to existing approaches.

2. Compared to the static ETM employed in [7] and the
AETM utilized in [9], this study introduces a novel
dynamic memory-based ETM. While the triggering

conditions in the aforementioned literatures depend
solely on the last triggering instant and the current
sampling instant, our proposed dynamic memory-
based event-triggering mechanism incorporates mul-
tiple previous triggering instants (no fewer than one),
thereby enhancing the system’s performance and flex-
ibility.

3. By incorporating DETM, the proposed feedback con-
troller can systematically leverage historical trigger-
ing information for more informed control decisions.
This advanced mechanism demonstrates superior per-
formance in mitigating signal distortions caused by
DoS attacks and deception attacks, ensuring robust
closed-loop stability under adversarial conditions.

2 Problem Formulation

Consider a class of T-S fuzzy systems subject to hybrid
cyber-attacks and external disturbances, described as fol-
lows:

ẋ(t) =
∑k

i=1 fi
(
m(t)

)(
Aix(t) +Biū(t) + Ciω(t)

)
,

z(t) =
∑k

i=1 fi
(
m(t)

)
Dix(t),

y(t) =
∑k

i=1 fi
(
m(t)

)
Eix(t),

(1)

where x(t) ∈ Rn denotes the state vector, ū(t) ∈ Rm repre-
sents the control input, and ω(t) ∈ Rp means an exogenous
disturbance belonging to the space L2[0,∞). The system
outputs are defined as y(t) ∈ Rq for the measured output
and z(t) ∈ Rr for the controlled output. The T-S fuzzy
system dynamics are characterized by constant matrices
Ai, Bi, Ci, Di, and Ei, which govern the relationships
between the inputs, states, and outputs. fi(m(t)), i ∈ N∗

meets
∑k

i=1 fi(m(t)) = 1, fi(m(t)) ∈ [0, 1].
In this section, both DoS attacks and deception attacks

are taken into consideration. Inspired by [13], these at-
tacks are represented through a Bernoulli process. Con-
sequently, the signal received by the actuator can be de-
scribed as follows:

ū(t) = α1(t)u(t) + (1− α1(t))α2(t)χ(t) (2)

where χ(t) represents the deception attack, which is
bounded by ϑ > 0. The variables α1(t) and α2(t) follow
Bernoulli-distributed processes and are used to model the
occurrence of DoS attacks and deception attacks, respec-
tively. Additionally, their expected values are defined as
E(α1(t)) = α1, E(α2(t)) = α2. Incorporating these consid-
erations, the detailed formulation is presented as follows:



1. If α1(t) = 1 for all α2(t), no cyber-attack occurs;
2. If α1(t) = 0 and α2(t) = 0, a DoS attack occurs;
3. If α1(t) = 0 and α2(t) = 1, a Deception attack occurs.

Remark 1. This paper presents a more comprehensive ap-
proach by simultaneously considering both types of cyber-
attacks. This integrated consideration of multiple attack
vectors demonstrates reduced conservatism in our security
framework.

The structure of the microsensor is illustrated in Fig-
ure 1. The sampler operates with a fixed sampling pe-
riod h. Upon receiving the output signal y(kh), the event
generator determines whether to update the control sig-
nal. The set of successful triggering instants is defined as
H1 = {t1, t2, . . . , tk}, k ∈ N∗. Let the current sampling
instant be denoted as tik = tk + ih, i ∈ N∗. Based on
this, the DMETM is formulated as follows:

tk+1 = inf
{
t > tk | H

(
y(tk), y(t

i
k)
)
> 0

}
(3)

where M
(
y(tk), y(t

i
k)
)
=

∑[w(t)]−1
j=0 uj e

T
k−j(t)Φ ek−j(t) −

σyT (tkj)Φy(tkj). [w(t)] = µ1(1+
2
π arctan ||y(tk)−y(tlk)||),

µ1 > 0. The error vector is ek−j(t) = y(tk−j) − y(tlk),
j ∈ {0, 1, . . . , [w(t)]−1}, Y(tkj) =

1
[w(t)]

∑[w(t)]−1
j=0 Y(tk−j),

the weighting parameters uj satisfy
∑[w(t)]−1

j=0 uj = 1, σ ∈
(0, 1] and u0 > u1 > ... > u[w(t)]−1, ensuring that recent
triggering instants are given greater importance. Here,
σ ∈ (0, 1] denotes the event-triggered parameter, [w(t)]
denotes the floor function of w(t), which rounds w(t) down
to the nearest integer, and Φ represents the event-triggered
matrix to be designed.

FIGURE 1. The structure of the DMETM.

Next, given the linear segment function τk(t) = t −
tik, τ < τk(t) < τ̄, the output signal ỹ(tk) can be rewritten

as

ỹ(tk) =
∑[w(t)]−1

j=0 (y(t− τk(t)) + ek−j(t)) , (4)

with t ∈ [tk + τk, tk+1 + τk+1).

Remark 2. In contrast to [12], which only considers the
current instant and the most recent trigger instant, our
proposed DMETM incorporates multiple historical trig-
gering instants. This approach significantly reduces con-
servatism, particularly in scenarios where the system is
subjected to hybrid network attacks. By leveraging a
broader range of past triggering instants, the DMETM en-
hances flexibility and robustness, ensuring more efficient
and reliable system performance under complex attack
conditions.

In this study, the state vector is assumed to be un-
measurable. To address this, a DOFC is introduced to
stabilize the closed-loop system. The signal received by
the DOFC is continuous, as it is processed by a zero-order
hold that converts the discrete signal transmitted from the
event trigger into a continuous one. Under the proposed
DMETM, the event-triggered fuzzy DOFC is formulated
as follows:

Plant rule j: IF mj
1(tk) is M j

1 , . . ., and mϑ(tk) is M j
ϑ

Then {
ẋC(t) =ACjxC(t) +BCj ỹ(tk),
u(t) =CCjxC(t)

(5)

where xC(t) ∈ Rp represents the state vector, ỹ(t) ∈ Rq

means the output signal of the event generator, and
AC , BC , CC are the controller matrices with approximate
dimension to be designed. Then the de-fuzzified output of
fuzzy controller rules (4) are obtained as


ẋC(t) =

∑k
j=1

∑[w(t)]−1
ν=0 fj(m(t))

{
ACjxC(t)

+BCj
[
Eix

(
t− τk(t)

)
+ ek−ν(t)

]}
,

u(t) =
∑k

j=1 fj(m(t))CCjxC(t).

(6)

For simplicity, fi(m(t)) and fj(m(t)) are abbreviated
as fi and fj , respectively. By integrating all the afore-
mentioned considerations, the augmented system can be



reformulated as follows.

ξ̇(t) =

k∑
i=1

k∑
j=1

[w(t)]−1∑
ν=0

fifj(Āξ(t) + B̄ξ(t− τk(t))

+ C̄ϑ(t) + Ēek−ν(t)),

z(t) =

k∑
i=1

k∑
j=1

fifj(D̄ξ(t)), t ∈ [tk + τk, tk+1 + τk+1),

k = 1, 2, . . .

ξ(t) = ψo, t ∈ [−τ̄ , 0),
(7)

where ξ(t) = [xT (t) xTC(t)]
T , ϑ(t) = [ωT (t) χT (t)]T , ψo is

the initial value, and

Ā = A0ij + (α1(t)− α1)Ā0ij , A0ij =

[
Ai a1BiCCj

0 ACj

]
,

Ā0ij =

[
0 BiCCj

0 0

]
, C̄ = C0ij + ((α1(t)− α1)α2

+ (1− α1)(α2(t)− α2)− (α1(t)− α1)(α2(t) + α2))C̄0ij ,

C0ij =

[
Ci (1− α1)α2Bi

0 0

]
, C̄0ij =

[
0 Bi

0 0

]
,

B̄ =

[
0 0

BCjEi 0

]
, Ē =

[
0

BCj

]
, D̄ =

[
Di 0

]
.

Before deriving the sufficient conditions of the aug-
mented system (7) satisfy the H∞ performance with index
γ, a definition is given as follows.

Definition 1. For non-zero disturbance ϑ(t), if the aug-
mented system satisfies the following inequality with zero
initial conditions,∫ +∞

0

zT (t)z(t)dt < γ2
∫ +∞

0

ϑT (t)ϑ(t)dt, (8)

it is said that the closed-loop system meet the
H∞ performance criterion with the prescribed perfor-
mance level γ.

3 Main Result

Theorem 1 establishes and proves a sufficient condition
for the closed-loop system to achieve asymptotic stability
and satisfy the H∞ performance index γ under hybrid
cyber-attacks. Theorem 2 provides a method for designing
the corresponding DOFC, with the proof omitted due to

space constraints. Additionally, a Corollary is presented,
which employs a proof by contradiction to demonstrate
that the proposed DMETM avoids Zeno behavior.

Theorem 1. For given scalars α1, α2, µ1 > 0, σ ∈ (0, 1],
and uν , ν ∈ {0, 1, ..., [w(t)]− 1}, the closed-loop T-S fuzzy
system is asymptotically stable with a prescribed perfor-
mance level, provided that there exist positive definite
matrices and with appropriate dimensions satisfying the
following linear matrix inequalities:[
Ξ1ij Ξ2ij

∗ Ξ3ij

]
< 0, i, j = 1, 2, ..., v ∈ {0, 1, ..., [w(t)]− 1},

where

Ξ1ij =

[
AT

0ijP + PA0ij +R+ D̄T D̄ P B̄
∗ ET

1iΦE1i −R

]
,

Ξ2ij =
[
PĒ PC0ij

]
, Ξ3ij = −diag{u,Φ, γ2I}.

Proof. The Lyapunov function is constructed as

V (t) = ξT (t)Pξ(t) +

∫ t

t−τ(t)

ξT (s)Rξ(s)ds (9)

Following the approach in [13], the infinitesimal generator
is utilized to characterize the derivative of the Lyapunov
function V (t) along the system’s trajectory. Subsequently,
we obtain:

LV (t) = lim
∆→0

E{V (ξ(t+∆)) | ξ(t)} − V (ξ(t))

∆
(10)

where ∆ > 0 is defined as a small positive scalar. By tak-
ing the expectation of Ā, B̄, C̄, D̄, and Ē, and leveraging
Equation (7), the following result can be derived:

E{Ā C̄} = {A0ij C0ij}. (11)

Next, substituting (10) to (9), it can be derived that

LV (t) =

k∑
j=1

k∑
j=1

[w(t)]−1∑
v=0

fifj(ξ
T (t)(ĀTP + PĀ)ξ(t)

+ 2ξT (t)PB̄ξ(t− τk(t))

+ 2ξT (t)PC̄ϑ(t) + 2ξT (t)PĒek−v(t)

+ ξT (t)Rξ(t)− ξT (t− τk(t))Rξ(t− τk(t))).

To derive sufficient conditions, the supply rate function
J(t) is selected as follows:

J(t) = E
{∫ ∞

0

(
zT (t)z(t)− γ2ϑT (t)ϑ(t)

)
dt

}
. (12)



By incorporating the DMETM condition (3) into the aug-
mented system (7), the following relationship holds for
t ∈ [tk, tk+1)

[w(t)]−1∑
ν=0

uje
T
k−ν(t)Φek−ν(t)

− σ

[w(t)]
ξT (t− τk(t))E

T
1iΦE1iξ(t− τk(t)) < 0

where E1i = diag{Ei, 0}. Then, it follows that

J(t) = E
{∫ ∞

0

(
zT (t)z(t)− γ2ϑT (t)ϑ(t) + LV (t)

+

[w(t)]−1∑
ν=0

σ

[w(t)]
ξT (t− τk(t))E

T
1iΦE1iξ(t− τk(t))

−
[w(t)]−1∑

v=0

uje
T
k−v(t)Φek−v(t)

)
dt
}
− V (∞)

≤
∫ ∞

0

k∑
i=1

k∑
j=1

[w(t)]−1∑
v=0

ζT (t)Πijζ(t)dt

where ζT (t) = [ξT (t) ξT (t− τk(t)) e
T
k−ν(t) ϑT (t)], and

Πij =


Π11 PB̄ PĒ PC0ij

∗ Π22 0 0
∗ ∗ Π33 0
∗ ∗ ∗ Π44

 , (13)

where

Π11 = AT
0ijP + PA0ij +R+ D̄T D̄, Π22 = ET

1iΦE1i −R,

Π33 = −ujΦ, Π44 = −γ2I.

Next, if and only if Πij < 0, then

LV (t) + zT (t)z(t)− γ2ϑT (t)ϑ(t) < 0

when ϑ(t) = 0, it can be readily deduced that E{LV (t)} <
0. This indicates the presence of a positive definite matrix
P that guarantees the asymptotic stability of the closed-
loop systemy. In other cases, integrating both sides from
0 to +∞ yields:∫ +∞

0

zT (t)z(t)dt− γ2
∫ +∞

0

ϑT (t)ϑ(t)dt < 0 (14)

which implies H∞ performance index is satisfied under
zero initial condition.

Theorem 2. For given constants α1, α2, µ1 > 0, σ ∈ (0, 1],
and uv, v ∈ {0, 1, ..., [w(t)] − 1}, if there exist matrices
X,Y,R11, R12, R22,Aij ,Bj , Cj , j = 1, 2, ... with appropri-
ate dimensions such that the following inequalities hold:N11ij N12ij N13ij

∗ N22ij 0p×q

∗ ∗ N33ij

 < 0,

i, j = 1, 2, ..., v ∈ {0, 1, ..., [w(t)]− 1}, (15)

where

N11ij =

[
He(AiX + α1BiCj) + R̃11 Ai +AT

ij + R̃12

∗ He(Y Ai) + R̃22

]
,

N12ij =

[
0 0

BjEi 0

]
, N13ij =

[
0 Ci (1− α1)α2Bi

Bj Y Ci (1− α1)α2Y Bi

]
,

N13ij =

[
XDT

i

DT
i

]
, N22ij =

[
ET

i ΦEi −R11 −R12

∗ −R22

]
,

N33ij = − diag{−uvΦ,−γ2I,−γ2I,−I},

then the closed-loop T-S fuzzy system under the hy-
brid cyber-attacks is to be asymptotically stable with the
DOFC values Acj , Bcj , CGj , j = 1, 2, ..., while satisfying
the H∞ performance with a prescribed gain γ.

Proof. The proof is omitted.

Corollary 1. The Zeno phenomenon is effectively avoided
under the proposed event-triggered mechanism 3.

Proof. Assume that the Zeno phenomenon occurs. This
implies the existence of a finite time T , such that lim

k→∞
tk =

T < ∞, and consequently lim
k→∞

(tk+1 − tk) = 0. On the
one hand, due to the continuity of the system dynamics,
it follows that:

lim
k→∞

(ỹ(tk+1)− ỹ(tk)) = 0.

As a result, the error term satisfies:

lim
k→∞

ek−j+1(t
−) = lim

k→∞

(
yk−j+1(tk−j)− y(tik)

)
= lim

k→∞

(
yk−j(tk)− y(tik)

)
= 0.

On the other hand, based on the event-triggered condi-
tion (3) for any σ ∈ (0, 1] and k ∈ N the following inequal-
ity holds:

⌈w(t)⌉−1∑
j=0

uje
T
k−j+1(t

−)Φek−j+1(t
−) = σȳT (t−kj)Φȳ(t

−
kj) > 0,



which implies
lim
k→∞

ek−j+1(t
−) ̸= 0.

Clearly, these two conclusions are contradictory. There-
fore, the Zeno phenomenon cannot occur under the pro-
posed event-triggered mechanism (3). This completes the
proof.

4 Conclusions

This work investigates the issue of robust control for
T-S fuzzy systems under hybrid cyber-attacks. The hy-
brid attack scenario follows a Bernoulli probability dis-
tribution, and a dynamic memory event-triggered mech-
anism is developed that fully incorporates state informa-
tion from multiple triggering instants, thereby enhancing
the credibility of the proposed controller while conserving
resources. Furthermore, considering the scenario where
state signals are unmeasurable, a dynamic output feed-
back controller is employed to stabilize the closed-loop
system. By constructing a Lyapunov function, sufficient
conditions for the system to satisfy H∞ performance are
derived. Additionally, the corresponding gain values for
the DOFC are obtained by solving LMIs.
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