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Abstract:

Reasonable forecasting of pork prices is of great significance
for stabilizing price fluctuations in the pig market and pro-
moting the healthy and sustainable development of the pig in-
dustry.The study addresses the high volatility and nonlinear
characteristics of pork prices by proposing a composite fore-
casting framework that integrates a dynamic state transition
mechanism with a dual random forest model to predict the
monthly average pork prices. The accuracy of price forecast-
ing is significantly enhanced through the introduction of adap-
tive feature engineering, a reinforcement learning-driven state
transition mechanism, and a trend correction module. The
core of the algorithm comprises three innovative mechanisms:
(i) a volatility state detection system based on dynamic time
warping, which accurately categorizes market states through
the synergistic analysis of annualized volatility matrices and
price momentum;(ii) a parallel architecture of dual random
forest models, designed with differentiated parameters for sta-
ble and volatile periods;(iii) a reinforcement learning-driven
adaptive weight adjustment mechanism that achieves online
optimization of model weights by integrating state transition
probability matrices and dynamic threshold control. Empir-
ical research using pork price data from China from 2002 to
2024 demonstrates that the proposed hybrid model achieves an
MSE of 0.4691, MAE of 0.4892, RMSE of 0.6849, and MAPE
of 2.4056%. The research findings offer a novel methodolog-
ical framework for agricultural product price forecasting and
hold practical value for stabilizing the supply chain of the pork
market.
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1. Introduction

According to the data released by the National Bu-
reau of Statistics, the national pig output in 2024 was
702.56 million heads, a decrease of 24.06 million heads
from the previous year, down by 3.3%. Despite the decline
in pig output, the figure remains above 700 million heads,
demonstrating the overall stability of China’s pig farming
industry. Against this backdrop, this paper focuses on
analyzing the trend of pork prices themselves. By con-
structing a forecasting model, this study delves into the
intrinsic patterns of price fluctuations, providing a scien-
tific basis for the stable development of the pork industry.

In the realm of agricultural product price forecasting,
scholars have conducted extensive research with diverse
methods. Initially, single-prediction models were preva-
lent. For instance, Martin-Rodriguez proposed a restric-
tive evolutionary spline model to analyze the daily sea-
sonal price changes of canary tomatoes in the UK mar-
ket [1]. With the development of research, due to the
non-linear characteristics of time-series data, machine-
learning models gained wide application. Shi Bo et al.
utilized an improved RBF neural network model to accu-
rately predict China’s soybean prices [2]. Subsequently,
combined models became a research focus. Zhou et al.
combined the Transformer with the seasonal trend de-
composition method, which significantly reduced the pre-
diction errors of FEDformer in time-series forecasting [3].
Liu Heb ing et al. constructed a CEEMDAN-PCA-CNN-
LSTM integrated model, effectively addressing the resid-
ual white-noise issue and enhancing prediction accuracy
[4]. Regarding specific agricultural products, Lu Chao-
fan et al. employed the CCA-PCA-LSTM model for ap-
ple price forecasting, effectively reducing prediction errors
[5]. Wu Zhan and Wang Chunxiao’s ARIMA-LSTM model



achieved good results in cottonseed meal price prediction
[6]. Zeng Yurong et al. proposed the DE-TFT model for
corn futures price prediction. They optimized TFT pa-
rameters and used other techniques to improve accuracy
[7]. Wang Jie et al. enhanced the Informer model and
proposed the STL-Informer-ARIMA model for pork price
forecasting, improving prediction accuracy and reliability
[8].

To address the aforementioned challenges, this study
proposes a dual-state reinforcement learning dynamic en-
semble model. The innovative system consists of three
core modules: First, a dynamic state perception system
is constructed to achieve accurate real-time identifica-
tion of market conditions by integrating multi-dimensional
market features with intelligent temporal alignment algo-
rithms. Second, a differentiated modeling architecture is
designed, utilizing parallel random forest models to cap-
ture long-term trends during stable periods and short-term
abrupt changes during volatile periods, and introducing a
temporal weighting mechanism to enhance the representa-
tion of recent data. Finally, an intelligent optimization en-
gine is developed, integrating a multi-level linkage mech-
anism of trend adaptive compensation, dynamic volatility
constraints, and residual feedback correction, forming a
closed-loop intelligent decision-making system.

2. Data Sources and Preprocessing

2.1. Data Sources

The data was integrated from a hog-farming enterprise
in southern China and the price monitoring platform of
the China Hog Farming Network. The southern Chinese
hog-farming enterprise provided data from January 2002
to December 2016, while the China Hog Farming Network
offered provincial pork price data from December 2016
to December 2024. A weighted average of the pork prices
collected from the China Hog Farming Network was calcu-
lated and then spliced and integrated with the enterprise’s
historical data to form the current price series, with the
unit being CNY per kilogram.

2.2. Data Preprocessing

2.2.1 Dynamic Window Interpolation

To address the issue of random missing values in the
price series, this method proposes a volatility-driven adap-
tive interpolation strategy [9]. By computing the annual-

ized historical price volatility in real time, the interpola-
tion window size is dynamically adjusted: the window is
reduced during periods of high volatility to preserve short-
term abrupt features, and enlarged during stable markets
to capture long-term trends. A bidirectional linear inter-
polation algorithm is used, combining the weighted aver-
ages of adjacent data points before and after the missing
value, to fill in the gaps while minimizing distortion to
the original trend. This method effectively resolves the
problem of excessive smoothing during periods of high
volatility that is common with traditional fixed-window
interpolation. The window size and interpolation formula
are given in formula (1) and formula (2).

Wt = max

(
5,

⌊
30

1 + 10σt

⌋)
(1)

p̂t =
1

Wt

Wt∑
i=1

[αpt−i + (1− α) pt+i] , α ∈ [0.3, 0.7] (2)

In the equation above,P = {p1, p2, . . . , pT }represents
the original price series, and σt represents the dynamically
calculated annualized volatility.

2.2.2 Improved Anomaly Detection

To identify outliers caused by transaction anomalies, a
dynamic threshold detection mechanism based on the me-
dian absolute deviation is designed. By calculating the
deviation of prices from the median within a sliding win-
dow, and adaptively adjusting the anomaly determination
threshold according to volatility: relaxing the threshold
tolerance when market volatility increases to avoid mis-
judging short-term sharp fluctuations as anomalies. The
detected anomalies are replaced with a local sliding me-
dian, which eliminates noise interference while preserving
the continuity characteristics of the price series. The al-
gorithm for testing is as follows:

(i) Calculate the median price within the window:

P̃Wt
= median

(
̂Pt−Wt+1:t

)
(3)

(ii) Compute the Median Absolute Deviation (MAD):

MAD = median
(∣∣∣p̂t − P̃Wt

∣∣∣) (4)

(iii) Improved Z - score calculation:

z∗t =
0.6745

(
p̂t − P̃Wt

)
MAD+ ϵ

, ϵ = 10−6 (5)



(iv) Set dynamic threshold:

τt = 3.5×
(
1 +

σt

0.15

)
(6)

(v) Correction strategy: When |z∗t | > τt, replace the
outlier with a 7 - day sliding median:

pcorrectedt = median
(

̂Pt−3:t+3

)
(7)

2.2.3 Data Normalization

To eliminate the dimensional differences between fea-
tures and prevent the impact of outliers on the model, the
data set range is scaled between 0 and 1[10]. Normaliza-
tion is implemented as follows:

Z ′ =
Z − Zmin

Zmax − Zmin
(8)

where Zmax and Zmin represent the maximum and min-
imum values of the sample, Z is the original value, and Z ′

is the normalized value. After normalization, the numer-
ical characteristics are still preserved on an equal scale,
which can effectively improve the training effect and gen-
eralization performance of the model.

3 Research Methodology

3.1 Overall Process

A dynamic state adaptive method for predicting pork
prices is proposed, the flowchart of which is shown in Fig-
ure 1. The specific process includes six core steps:

Step 1: Data Integration and Cleaning: Integrate pork
price data, fill in missing values through temporal align-
ment and cubic spline interpolation, correct abnormal fluc-
tuations, and construct a complete time series dataset.

Step 2: Feature Space Construction: Generate multi-
scale trend baselines using sliding windows, combine dy-
namic volatility bands with momentum indicators to sep-
arate residual items, forming a three-dimensional feature
matrix.

Step 3: Market State Identification: Determine market
conditions based on dual threshold mechanisms of annu-
alized volatility, and dynamically update the transition
probabilities between stable and volatile periods through
reinforcement learning state transition matrices.

Step 4: Hybrid Model Training: Build a dual-model
random forest architecture: a shallow model for stable

periods and a deep model for volatile periods, assigning
1.5 times the weight to the recent 30 days of data.

Step 5: Forecast Result Correction Implementation of
Three-Level Optimization: RSI threshold triggers ±25%
trend correction, dynamic volatility bands constrain the
forecast range, and residual feedback integrates with en-
tropy weight method to correct items.

Step 6: Iterative Optimization System: Establish a 30-
day rolling window evaluation, update the state matrix
parameters through reinforcement learning reward mech-
anisms, and optimize the feature engineering module with
a learning rate of 0.1 in the reverse direction.

FIGURE 1. Pork Price Forecasting Process



3.2. Dynamic State Adaptive Forecasting Method

3.2.1 Multimodal Feature Space Construction

A three-variable representation system is constructed
to fuse trend, cycle, and volatility features. The trend
modality uses a sliding window to generate multi-scale
baselines, and the window length is adjusted according
to the real-time volatility. The cycle modality extracts
the main frequency components of the monthly cycle
through Fourier transform. The volatility modality de-
tects anomalies based on the exponentially smoothed dy-
namic Bollinger Bands. A feature gating network is de-
signed to generate dynamic weights through the hidden
states of LSTM. During the stable period, more emphasis
is placed on the trend modality (with a weight of 60% -
80%), while during the volatile period, the weights of the
cycle and volatility modalities are increased (55% - 70%).

3.2.2 Dynamic Market State Identification

To dynamically identify market states, we define the
market state space S = {s0, s1}, where s0 represents a
stable state and s1 represents a volatile state. The iden-
tification rules for stable and volatile periods are given by
the following formulas:

Stable Period Identification Rules: σa
30 < θt

|TSt| ≤ 0.15
CMACD ∈ (−0.5, 0.5)

(9)

Volatile Period Identification Rules: σa
7 > 1.5θt

|TSt| > 0.25
∆P3d ≥ Q90(|∆P |)

(10)

θt is the dynamic threshold defined by equation (11):

θt = θ0 ·
[
1 + α · tanh

(
Pt − µP

3σP

)]
(11)

TSt is the trend strength index defined by equation (12):

TSt =
1

3

3∑
m=1

[
Pt − Pt−5m

5m
× sign (ACC3m)

]
(12)

σa
30 represents the 30-day annualized volatility,σa

7 rep-
resents the 7-day annualized volatility, ∆P3d is the 3-day
price absolute change, and Q90 is the 90th percentile of
historical price changes.

Additionally, α = 0.3 is the price sensitivity coefficient,
µP is the annual price median, and σP is the annual price
standard deviation. m ∈ {1, 2, 3} represents the time win-
dow multiplier (corresponding to 5-day, 10-day, 15-day
periods), and ACC3m = 1

3

∑3
k=1 (Pt−k − Pt−k−1) is the

3-period price acceleration, used to measure the rate of
trend change.

3.2.3 Dual-Model Random Forest Architecture

Random forests can interpret the impact of several inde-
pendent variables (X1, X2, . . . , Xk) on the dependent vari-
able Y . If the dependent variable Y has n observations
and is associated with k independent variables, when con-
structing classification trees, the random forest randomly
selects n observations from the original data, with some
being chosen multiple times and others not at all. This
is the method of Bootstrap resampling. Additionally, the
random forest randomly selects a subset of variables from
the k independent variables for determining the nodes of
the classification tree. Each constructed classification tree
may differ. Generally, the random forest randomly gener-
ates hundreds to thousands of classification trees, and then
selects the most consistent tree as the final result[11], as
shown in Figure 2.

Constructing a differentiated forecasting model ensem-
ble: 1. Stable period model: Configure 180 decision trees
with a maximum depth of 5 layers, a minimum number of
samples per leaf of 2, and the number of split features set
to √

p (where p is the total number of features). 2. Volatile
period model: Enhance to 200 decision trees, extend the
depth to 6 layers, and reduce the minimum number of
split samples to 3. The dynamic weight allocation mecha-
nism assigns 1.5 times the sample weight to the recent 30
days of data, and feature importance is calculated using
both Gini impurity and permutation importance for dual
verification.

3.2.4 Dynamic Optimization of Forecast Results

Establish a three-level correction system:
À. Trend Compensation: Based on the 14-day RSI in-

dicator, trigger a ±25% amplitude correction, with the
formula as follows:

∆PRSI =


−0.25× RSI−70

30 × Pbase, if RSI > 70

0.25× 30−RSI
30 × Pbase, if RSI < 30

0, otherwise
(13)



FIGURE 2. Random Forest Diagram

Where RSI is the 14-day relative strength indicator,
Pbase is the basic forecast value. This algorithm imple-
ments a gradual compensation for overbought and over-
sold states.

Á.Volatility Constraint: Dynamic volatility band limits
the forecast deviation range, with the maximum allowable
deviation rate set to 15% of the base price, with the for-
mula as follows:

Bt = 0.15×
(
1 + 0.5× tanh

(
σt

θ0
− 1

))
(14)

Where σt is the 30-day annualized volatility, θ0 = 0.15
is the base threshold.

Â.Residual Feedback: Using an error propagation
model with a decay coefficient of 0.3, the historical error
window retains 6 periods. The final forecast value is in-
tegrated through entropy weight method, with the model
output weight accounting for 60%, the current state in-
formation accounting for 25%, and the trend correction
accounting for 15%. The formula is as follows:

εt =

5∑
k=0

(0.3)k · εt−k−1 (15)

W =
1

1 +
∑n

i=1 Hi

 0.6
0.25
0.15

 (16)

Where εt is the historical error, Hi is the information
entropy of each forecast source.

3.2.5 Reinforcement Learning-Driven Dynamic Opti-
mization Mechanism

A reinforcement learning framework based on Q-
Learning is introduced to construct a closed-loop op-
timization system of ”state-action-reward.” A two-
dimensional state space (market state encoding, trend
strength index) and a third-order action space (model
weight adjustment, state transition threshold correction,
exploration rate dynamic decay) are designed. A multi-
dimensional reward function integrates prediction accu-
racy, state stability, and weight diversity indicators. A
dual-channel deep Q-network is used to evaluate action
values, where the target network maintains parameter sta-
bility through a soft update strategy (τ = 0.01) . The
training process uses a cyclic experience replay mechanism
to store thousands of state transition records, combined
with an adaptive ϵ-greedy strategy (initial exploration rate
0.3, exponential decay factor λ = 0.001) to balance explo-
ration and exploitation. The Huber loss function is inno-
vatively introduced to enhance network training stability,
and a triple parameter linkage mechanism is achieved: �
dynamically adjusting the model weight allocation dur-
ing stable/volatile periods (±10% amplitude) � optimiz-
ing the annualized volatility threshold (±5% sensitivity) �
autonomously adjusting the state exploration decay rate
(0.95-1.05 multiplier). The reward function is shown as
follows:

Rt = 0.6

1−

∣∣∣Pt − P̂t

∣∣∣
Pt

+ 0.3e−2|∆S| +
0.1

1 + Var (W )
(17)

where ∆S =
∥∥s(t) − s(t−1)

∥∥
2

is the state transition am-
plitude, and Var (W ) measures the model weight fluctua-
tion.

3.3. Model Evaluation Metrics

This experiment employs five standards to assess the
model’s performance and forecasting accuracy: Mean



Squared Error (MSE), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), Mean Absolute Percentage
Error (MAPE). The formulas are as follows:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (18)

MAE =
1

n

n∑
i=1

|ŷi − yi| (19)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (20)

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (21)

where yi is the actual value, ŷi is the predicted value,
and n is the number of forecasted data points.

4. Experimental Results and Analysis

4.1. Model Evaluation Metrics

LSTM[12], GRU [13], SVR[14], and traditional Ran-
dom Forest (RF) models[15] are selected, all of which have
unique advantages and application scenarios in the field of
time series. These models are compared with the forecast-
ing model proposed in this paper to verify the predictive
performance of the multi-model combination optimization
method.We divided the dataset into training and testing
sets in a 7:3 ratio. The experimental results show that
our method (OURS) significantly outperforms the base-
line models in four core metrics: MSE (0.4691) is 79.3%
lower than LSTM (2.2763), MAE (0.4892) is 58.2% lower
than GRU (0.8528), RMSE (0.6849) is only 40.4% of SVR
(1.6945), and MAPE (2.4056%) is a 65.8% decrease com-
pared to RF (7.046%).

TABLE 1. Comparative experiment of different models of
monthly average pork price

Model MSE MAE RMSE MAPE

OURS 0.4691 0.4892 0.6849 2.4056%
LSTM 2.2763 1.1693 1.5087 8.086%
GRU 1.3468 0.8528 1.1605 5.603%
SVR 2.8712 1.0676 1.6945 6.649%
RF 2.5193 1.1342 1.7533 7.046%

4.2. Ablation Experiment Analysis

To verify the effectiveness of the model’s core compo-
nents, this study designed three sets of control experi-
ments: (i) removing the dual model mechanism (only re-
taining the stable period model), (ii) disabling reinforce-
ment learning optimization (fixing the state transition
matrix), (iii) eliminating the trend adaptation module.
As shown in Table 2, the complete model (MSE=0.4691,
MAPE=2.41%) significantly outperforms all simplified
versions. Among them, the dual model mechanism con-
tributes the most, and its removal leads to an increase of
42.3% in MAE to 0.696; the absence of the reinforcement
learning module increases the RMSE standard deviation
by 2.03 times; after removing the trend correction mod-
ule, the MAPE at price inflection points rises to 5.14%.
The experiments prove that there is a significant synergis-
tic effect among dynamic state perception, differentiated
modeling, and trend compensation mechanisms.

5. Conclusions

This research developed a Dual-State Reinforcement
Learning based Dynamic Ensemble Model for pork price
forecasting, addressing their high volatility and non - lin-
earity.

The dual discrimination mechanism, using annualized
volatility matrices and trend strength indices, is crucial
for differentiating market states. Ablation experiments
show its removal increases prediction errors.

The differentiated dual-model random forest architec-
ture, with 180-tree shallow and 200-tree deep models for
stable and volatile periods respectively, outperforms sin-
gle models like LSTM, GRU, SVR, and RF. For example,
in MAPE, our model achieves 2.4056%, which is 65.8%
lower than that of RF

The reinforcement learning-driven three-level correction
system, combining trend compensation, volatility band
constraints, and residual feedback, stabilizes forecasts. Its
removal in ablation experiments notably increases RMSE
standard deviation.

Practically, the model can offer 1-3-month price warn-
ing windows for pig farming enterprises, aiding decision-
making in the pork market supply chain.

Future work will integrate feed price data to build a
multi-source risk coupling early warning system and ex-
plore the model’s transferability to poultry market price
prediction. Our research provides a novel framework for
agricultural product price forecasting.



TABLE 2. Comparison results of model ablation experiment

Dual Model
Mechanism

RL State
Transition

Trend
Adaptation

MSE MAE RMSE MAPE

— ✓ ✓ 1.735 1.105 1.598 6.1220%
✓ — ✓ 0.981 0.696 1.087 4.7356%
✓ ✓ — 1.267 0.785 1.125 5.1356%
✓ ✓ ✓ 0.4691 0.4892 0.6849 2.4056%
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