
LEARNING TO COMMUNICATE IN MULTI-AGENT REINFORCEMENT
LEARNING FOR AUTONOMOUS CYBER DEFENCE

FAIZAN CONTRACTOR1, LI LI2, RANWA AL MALLAH1

1Electrical and Computer Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
2Defence Research and Development Canada, Ottawa, Ontario, Canada

E-MAIL: faizan.contractor@gmail.com, li.li2@ecn.forces.gc.ca, ranwa.al-mallah@polymtl.ca

Abstract:
Popular methods in cooperative Multi-Agent Reinforcement

Learning with partially observable environments typically allow
agents to act independently during execution, which may limit
the coordinated effect of the trained policies. However, by sharing
information such as known or suspected ongoing threats, effective
communication can lead to improved decision-making in the
cyber battle space. We propose a game design where defender
agents learn to communicate and defend against imminent cyber
threats by playing training games in the Cyber Operations
Research Gym, using the Differentiable Inter Agent Learning
algorithm adapted to the cyber operational environment. The tac-
tical policies learned by these autonomous agents are akin to those
of human experts during incident responses to avert cyber threats.
In addition, the agents simultaneously learn minimal cost com-
munication messages while learning their defence tactical policies.
Keywords:

Coordination; Communication; Learning to Communicate;
Cybersecurity; Cyber Defence; Autonomous Cyber Defence

1. Introduction

In recent years, the rapid advancement of autonomous agent
technology across various application domains [1] has led
to experimentation with Autonomous Cyber Defence (ACD)
agents, aiming to achieve machine-speed scalability in cyber
defence operations. ACD agents apply Deep Reinforcement
Learning (DRL) techniques, similar to agents being developed
for other applications [2] [7]. They are decision-making agents
envisioned to learn automatically to take appropriate tactical
actions in a timely response to adversarial activities in cyber
systems, such as enterprise networks and networked industry
systems [3]. Given the complexity of cyber networks, multi-

ple cooperative defender agents, referred to as blue agents, are
often considered. As shown in the previous work [4], cooper-
ative agents trained using Multi-Agent Reinforcement Learn-
ing (MARL) may improve cyber defence effectiveness by co-
ordinating their actions and collectively responding to threats
in multi-stage cyber defence operations. However, in a cyber
network environment, a large amount of information might be
needed to ensure effective decision-making. In fact, the amount
of information requested by the human blue team to perform
detection analysis and countermeasures is often strictly limited
by the network operation centre to prevent it from overwhelm-
ing the network. Therefore, in training MARL ACD agents, re-
ducing the needed information in the agents’ observation space
is crucial to facilitate training, improve training speed, and re-
duce information cost during execution. In this work, we apply
inter-agent communications to avoid a single large observation
space across all agents. This allows the problem space to be
decomposed into smaller areas of responsibility for each of the
multiple ACD agents. Furthermore, inter-agent communica-
tion in MARL enables agents to share information during both
training and execution, leading to more robust and coordinated
defense strategies [5]. This is akin to what would human ex-
perts during incident responses do when they try to avert cyber
threats. This work makes the following contributions:

• A novel application of the MARL algorithm with inter-
agent communication capabilities for ACD using the Dif-
ferentiable Inter-Agent Learning (DIAL) algorithm [6]
adapted for cyber operations.

• The first MARL ACD agents to use minimal single-
bit inter-agent communication messages that outperform
agents that require global state information.

• Behavior and performance evaluation of the communicat-
ing agents in increasingly complex scenarios, and demon-

stration of the practical applicability of this approach
within an enterprise network simulated in a realistic en-
vironment, Cyber Operations Research Gym (CybORG).

2. MARL Game Design for Cyber Agents

To generate ACD agents using MARL, the first step is to
transform the networked cyber operation use cases into MARL
training game episodes using MARL concepts and agent inter-
faces. The training game consists of the cyber network sce-
nario, agents, their action spaces, observation spaces, and the
reward function. In the training games, blue agents (defend-
ers) counter the advances of the red agent (attacker), learning
to make defence tactic action decisions and to communicate ef-
fectively. Through the MARL training algorithm, blue agents
develop their defense strategies, constructed in their decision
policy models.

Network Configuration: The games used in this work run
on three scenarios: a small network, a small network with a
green agent, and a large network. In each training game, its
network is simulated in the agent training environment. Figure
1 depicts the basic network architecture underlying all three
scenarios, including the User, Enterprise and Operational sub-
nets.

FIGURE 1. Network configurations in the designed cyber operation
games.

Red Agent: The goal of the scripted red agent is to infil-
trate the server residing in the Operational subnet and disrupt
the essential services it provides to all users over the network.
The red agent may move in and across the User subnet. Af-
ter discovering the Enterprise and Operational subnets, the red

agent follows the same strategy of actions and attempts to gain
admin privileges on hosts. Additionally, should the defender
agents succeed with their mitigation actions to remove the red
processes, the red agent will attempt to reestablish its sessions
on the discovered hosts. Lastly, the red agent can perform the
’impact’ action to stop the key service provided by the Opera-
tional server

Blue Agents: One blue agent resides in each subnet to de-
fend against the red attacks. The objective of the blue agents
is to prevent the red agent from advancing to the Operational
server.

Cyber operation actions performed by blue agents to protect
the network are environmental actions, categorized into passive
and active ones. The passive ’monitor’ action, executed at the
end of each turn, functions like a host-based IDS, which can
generate alerts in response to network connections and process
creations, and signal potential malicious activities. The active
actions, which must be learned by the agents, include ’remove,’
’restore,’ ’analyze,’ and ’block,’ each designed to counter spe-
cific threats detected within the network.

The reward function considers the importance of different
hosts in the network. A host captured by the red agent by in-
stalling its privileged shell leads to various penalties: a minor
penalty of -0.1 for a User subnet host, a medium penalty of -1.0
for an Enterprise and Operational subnet host, a severe penalty
of -10.0 for the Operational server due to the critical service
it provides. The ’restore’ action also incurs penalties based on
the host’s importance to improve the decision strategy to be
learned. Inappropriate actions, such as unnecessary ’remove’
or ’analyze’ actions, incur a standard penalty of -0.5, while a
flat penalty of -1.0 is imposed for each ’block’ due to network
traffic capacity disruption. The reward function helps defend-
ers prioritize network assets, minimize damage from red agent
activities, and adapt their strategies to protect high-value assets.

The observation space vector comprises host and network
elements. In the host elements, for each host, the observation
vector includes four binary digits: the first two indicate recent
red agent activities, such as port scans or exploits, and the last
two represent the current host status, ranging from no threats
visible to the presence of a privileged shell. The network ele-
ment of the observation space vector indicates the traffic block
condition in the subnet of the blue agent. In the small network
scenario, a single block bit indicates whether the traffic to the
other subnet is blocked. In the large network scenario, two
block bits signify which specific subnet is blocked.

3. The Training Approach

Though both red and blue agent training can be supported
in CybORG, this work investigates the training of coopera-
tive strategies for blue agents. The network scenarios, the blue
agent’s action and observation spaces and the reward function
are all enabled in CybORG using CybORG existing features,
or adapting CybORG modules according to the game design.

Adapted DIAL Algorithm for Cyber Agents: In DIAL,
during centralized learning, each agent trains its neural network
called ’C-Net’. The ’C-Net’ outputs both communication and
environmental actions. The environmental action is executed,
while the communication action, which defines the message to
be sent, is inputted to the ’C-Nets’ of other agents. Additional
inputs to ’C-Net’ include the agent’s local observation space,
the feedback from other agents on previous messages received
from this agent, and the reward resulting from the previous ac-
tion.

’C-Net’ is a Recurrent Neural Network (RNN) with two hid-
den layers h that are interconnected and maintained during an
episode. For the ’C-Net’ architecture, readers are referred to
[6] for details. Denote the four inputs using a tuple (oat , ma′

t−1,
ua
t−1, a), where a is the agent identifier, oat is the partial ob-

servation space of agent a at time t, ma′

t−1 is the message re-
ceived from agent a′ from the previous timestep, and ua

t−1 is
the previous action of agent a. The four inputs are embed-
ded as follows. The embedding of the partial observation space
TaskMLP (oat) is generated by a task-specific network which
needs to be specific for the environment. For instance, in the
Switch Riddle problem [6] for which DIAL was designed, oat
is passed through a lookup table to produce the embedding
TaskMLP (oat). The message input ma′

t−1 is passed through a
1-layer MLP, and inputs ua

t−1 and a are passed through lookup
tables to generate their corresponding embeddings. The four
components are then summed element-wise to produce the em-
bedding of zat as shown in the following equation. All embed-
dings have the same size of 128 [6].

zat = (TaskMLP (oat) + MLP [|M |, 128](mt−1) +
Lookup(ua

t−a) + Lookup(a))

For our cyber agents defined in the previous section, the
above embedding for ma′

t−1, ua
t−1, a can be directly applied.

However, since the observation space of each blue agent is
much more complex than the previous simple environments,
a systematic technique is employed. We first embed the in-
formation associated with each host node in the blue agent’s
observation space by passing through a lookup table. Then,
these components are summed element-wise to obtain the final
embedding of the agent’s observation space. As illustrated in

the following equation, host iat , i = 1, 2, ...N is the host in-
formation and the blocksat is the block bits information in the
observation space of agent a.

zat = ((Lookup(host 1at) + Lookup(host 2at) +
... + Lookup(host Na

t) + Lookup(blocksat)) +
MLP [|M |, 128](mt−1) + Lookup(ua

t−a) + Lookup(a))

zat is then processed through the 2-layer RNN built us-
ing Rectified Linear Units (ReLU) and Gated Recurrent Units
(GRU), which has similar performance to Long Short-Term
Memory (LSTM) [6]. The output at timestep t consists of q
values for the environment actions to feed to the action selec-
tor, and q values for the communication message to feed to a
Discretize/Regularize Unit (DRU).

Agent training begins with randomized communication and
action policies. Training then optimizes the policies through
iterative trial and error. During training, agents participate
in game episodes, interacting with the environment and each
other. They optimize decision policies (C-Nets) for actions to
counter attackers and for communications with other agents.

Mapping C-NET Inter-Agent Communications to Cy-
bORG: To train cyber agents, in addition to the new embedding
scheme for the agent’s observation space, the agent communi-
cation substrate in the C-Net of the DIAL algorithm must be
translated into real message exchanges between agents across
the cyber network simulated in CybORG. This is a crucial step
in enabling the MARL algorithm, which embeds communica-
tion learning within action learning, such as DIAL, in the cyber
network training environment.

At each action step for each agent, the DIAL algorithm gen-
erates a ”message” as an output from the agent’s C-Net in the
format of a numeric value in m ∈ R. During training, m is
sent to other agents and used as input to their C-Nets for the
next action step. m is received by the C-Net as an input. The
C-Net trains to update the agent’s policies for both defence ac-
tions and communication messages. During execution, each m
is discretized to a binary communication message M sent to
the agents over the cyber network. When m = 0, no message
needs to be sent. The fewer the message bits required for a bet-
ter decision model, the more efficient the communications and
overall performance of the agents.

Training Agents with Strategic Action Unmasking: Un-
less an action is unmasked, it is unavailable in the blue agent’s
action space, consistent with real-world conditions. For exam-
ple, an action is unavailable if its execution command cannot
be formed due to missing parameters, such as removing a ma-
licious process without knowing the process identifier. At the
same time, action masking should not be overused, as it may
prevent the agent from discovering its emergent policies.

Therefore, the ’remove’ and ’restore’ actions are only un-
masked upon threat detection. The ’remove’ action cannot ex-
ecute without a threat to eliminate, and the highly disruptive
’restore’ action is not permitted in operational networks unless
a persistent threat exists on the host or server. The ”block” ac-
tion is always unmasked.

Furthermore, exploration space linking agents’ communica-
tions and agents’ actions is shaped by jointly considering agent
communications and action unmasking, referred to as ”Strate-
gic Action Unmasking (SAU) ”. As per this strategy, the ’anal-
yse’ action can only be used by human blue team members
upon detecting or receiving an alert of a threat because it is
very resource-intensive. Aligning with this real-world condi-
tion, the ’analyse’ action is contingent upon the detection of a
threat shown in the blue agent’s observation space. However,
since the agent can only see its subnet in the observation space
but can communicate with agents in different subnets, the ’anal-
yse’ action is also unmasked upon receiving a communication
message from other agents. As when, who and what to message
is unknown and must be learned by the agents, the condition is
based solely on message reception. SAU allows agents to ex-
plore integrated decision space on actions and communication
messages. Other masked actions are specific to a single host
and server, and their masks are not related to inter-agent com-
munications. Therefore, SAU is only applied to the ’analyse’
action.

4. Evaluation and results

Training games run for 30 timesteps per game episode for
the small and medium network scenarios and 60 timesteps per
episode for the larger network configuration. Each training
session consists of 5,000 epochs, with each epoch comprising
128 episodes, resulting in approximately 2 to 4 million training
timesteps to construct the agent policies. During evaluation,
where the agents execute their learned policies to defend the
network, 128 independent episodes are run to calculate the per-
formance metrics. The algorithm parameters are set according
to Table 1.

As illustrated in Figure 3, DIAL employs a distributed ar-
chitecture where each agent trains using its observation space
confined by its subnet, rather than the global state information.
While this reduces the transmission cost of collecting global
states, it takes longer to learn action decisions and communi-
cation messages. This is expected, as DIAL learns additional
Q-values for selecting communication messages while learning
those for selecting actions. For example, DIAL agents learn
more slowly about the usefulness of the ’analyse’ followed by

TABLE 1. Parameters for DIAL & QMix algorithms in CybORG.

Parameters DIAL Values QMix Values
Batch size 128 128
Rollout size 8 8
Learning rate (α) 0.0005 0.001
Discount Factor (γ) 0.90 0.90
Exploration rate start,
finish (ϵ)

1.0, 0.05 1.0, 0.05

Exploration anneal
time

1M timesteps 1M timesteps

RNN hidden layer
dim

128 64

Target update interval 100 Epochs 200 Epochs

the ’restore’ action. When the ’monitor’ action fails more fre-
quently in detecting the red agent’s threats, DIAL is at a greater
disadvantage compared to QMix, as shown in 3 (b) versus 3 (a),
since QMix learns the general pattern from the global state in-
formation. The learning speed and the learned policies of DIAL
agents can be improved with SAU which makes ’analyse’ avail-
able in the agent action space upon receiving a communication
message, as revealed in 3 (c). Employing SAU, DIAL agents’
policies slightly outperform those of QMix agents, showing the
effectiveness of SAU. The mean and the standard deviation of
the return across these experiments are presented in Table 2.

During the learning, as shown in Figure 3, some meaningful
communications are observed as DIAL agents did learn to use
the 1-bit messaging system to alert potential threats such as port
scans from the other subnet. This communication helps agents
learn policies initially. However in this setting, the agents have
not developed a consistent communication strategy. Increasing
the number of message bits does not improve results. DIAL
agents show no clear performance advantages in these simple
game sets, except for eliminating the high transmission cost of
collecting global state information.

In the extended games, the ’block’ action and SAU are en-
abled in all network configurations. The detection rate is set
to 50% to align with real-world conditions. The green agent is
activated in the small network. As illustrated in Figure 2, DIAL
agents improve their learning performance across these exper-
iments. The policies learned by DIAL agents also outperform
those of QMix agents, as shown in Figure 2 and Table 2. DIAL
agents utilize a 1-bit message system. Increasing the number
of message bits does not improve the performance. This re-
sult demonstrates a significant reduction in information trans-
mission costs, indicating that most global state information is
unnecessary when agents learn optimal inter-agent communi-
cations.

DIAL outperforms QMix in these cases by learning to ef-

TABLE 2. Mean returns with standard deviation across experiments.

Simple Game Tests as in Figure 3
Algorithm 95% detection 50% detection 50% detection& SAU

DIAL −4.9± 1.4 −8.2± 1.5 −6.4± 0.9
QMIX −4.2± 1.1 −7.3± 1.2 −7.1± 1.3
Extended Game Tests as in Figure 2: 50% detection with SAU and ‘Block’ Action

Algorithm Small network Small network with green agent Large network
DIAL −3.6± 0.8 −18.4± 1.8 −26.4± 1.5
QMIX −7.8± 1.2 −32.7± 2.3 −43.4± 4.6

fectively utilize communication messages to coordinate actions
like the ’analyse’, ’block’ and ’restore’ when threats are un-
detected. In small networks, the performance advantage of
DIAL over QMix is marginal. However, in larger networks,
DIAL demonstrates significant improvement over QMix. Ad-
ditionally, in small networks, considering a green agent caus-
ing false-positive threat detections — a common occurrence
in real-world networks — reveals DIAL’s superior decision-
making compared to QMix.

The performance advantage of DIAL agents in the presence
of green agents enhances the applicability of the ACD agent
approach. Green agents simulate general network users, offer-
ing valuable insights into the complexities of real-world cyber
defence. Network user traffic can mask malicious activities,
posing a major challenge for network analysts, who must dif-
ferentiate between malicious and benign activities to effectively
defend the network.

The impact of green agents on blue agents’ decision-making
is evident from the accumulation of penalties, as shown in Fig-
ure 2 (b). These penalties, while not indicative of actual host
compromises, represent the time and resource costs associated
with addressing false positives. Such costs are a realistic aspect
of cyber operations where not all security alerts correspond to
genuine threats but still require investigation and consume valu-
able resources. Therefore DIAL agents’ ability to handle the
green agent is crucial.

5 Conclusion

This work presented a game design and agent training ap-
proach using the MARL system to develop cooperative ACD
agents. We have specifically studied the training of agents that
can learn optimal policies for cyber defense tactics by leverag-
ing inter-agent communications while simultaneously learning
the optimal communication behaviors required to achieve these
policies.

References

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles
Brundage, and Anil Anthony Bharath. 2017. Deep Re-
inforcement Learning: A Brief Survey. IEEE Sig-
nal Processing Magazine 34, 6 (Nov. 2017), 26–38.
https://doi.org/10.1109/MSP.2017.2743240

[2] Jacob Wiebe, Ranwa Al Mallah, and Li Li. 2023. Learn-
ing Cyber Defence Tactics from Scratch with Multi-Agent
Reinforcement Learning. In Proc. of Second International
Workshop on Autonomous Cyber Defense (Aug. 2023).
https://doi.org/10.48550/ARXIV.2310.05939

[3] Sanyam Vyas, John Hannay, Andrew Bolton,
and Professor Pete Burnap. 2023. Automated
Cyber Defence: A Review. (March 2023).
https://doi.org/10.48550/arXiv.2303.04926

[4] Mitchell Kiely, David Bowman, Maxwell Standen, and
Christopher Moir. 2023. On Autonomous Agents
in a Cyber Defence Environment. (Sept.2023).
https://doi.org/10.48550/arXiv.2309.07388

[5] Changxi Zhu, Mehdi Dastani, and Shihan Wang.
2022. A survey of multi-agent reinforcement
learning with communication. (March 2022).
https://doi.org/10.48550/arXiv.2203.08975

[6] Jakob Foerster, Ioannis Alexandros Assael, Nando de Fre-
itas, and Shimon Whiteson. 2016. Learning to Communi-
cate with Deep Multi-Agent Reinforcement Learning. In
Advances in Neural Information Processing Systems, Vol.
29.

[7] Garrett Mcdonald, Li Li, and Ranwa Al Mallah.
2024. Finding the Optimal Security Policies for Au-
tonomous Cyber Operations With Competitive Reinforce-
ment Learning. IEEE Access 12 (2024), 120292–120305.

(a) Small network.

(b) Small network with green agent.

(c) Large network.

FIGURE 2. Learning curves for DIAL and QMix in extended games -
With SAU and ’block’ action.

(a) 95% Detection rate without SAU.

(b) 50% Detection rate without SAU.

(c) 50% Detection rate with SAU.

FIGURE 3. Learning curves from simple game experiments- Small net-
work without ’block’ action.

	. Introduction
	. MARL Game Design for Cyber Agents
	. The Training Approach
	. Evaluation and results
	Conclusion

