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Abstract: 
With the continuous advancement of computer vision and 

deep learning, object detection has achieved remarkable progress 
across diverse domains, yet specific scenarios such as lion-head 
goose detection in complex backgrounds still face significant 
challenges due to issues like object overlap and occlusion, scale 
variations, and environmental interference. To tackle these 
challenges, this paper presents PCN-YOLO, an improved 
detection method based on YOLO11. The proposed approach 
first replaces the original C3k2 module in the backbone with a 
Poly Kernel Inception (PKI) block, enabling effective extraction 
of multi-scale information from input feature maps. 
Subsequently, a newly designed Context-Guided Attention 
Fusion (CGAFusion) module at the network neck fuses 
contextual information to precisely identify lion-head goose 
positions and features. Finally, replacing the conventional loss 
function with the Normalized Wasserstein Distance (NWD) loss 
function strengthens object contour capture. Experimental 
results demonstrate that PCN-YOLO outperforms the YOLO11n 
model with improvements of 1.5% in precision, 2.3% in recall, 
1.7% in mAP@50, and 1.9% in mAP@50-95, achieving 
outstanding performance metrics of 0.896, 0.852, 0.918, and 0.567 
respectively, thus validating its practical effectiveness. 
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1. Introduction 

In recent years, the lion-head goose industry has emerged 

as a pivotal sector in China’s agriculture, particularly in 

Chenghai District, Shantou, where a complete industrial chain 

encompassing goose breeding, hatchling sales, meat goose 

rearing, and marinated processing has been established[1]. 

Preliminary statistics indicate that by 2024, the annual sales 

volume of lion-head geese in Chenghai District is expected to 

reach 10 million, with the full industrial chain generating over 

6 billion yuan in revenue[2]. For lion-head goose farming, 

non-invasive object detection technology is beneficial for 

enabling precision management without disturbing them[3]. 

By accurately detecting goose quantity and growth status, 

farmers can optimize feed ration, improve breeding 

environments, and enhance economic efficiency. Additionally, 

analyzing goose behavior through object detection provides 

insights into their living habits, supporting scientific farming 

practices. Thus, applying advanced object detection 

technology to lion-head goose farming holds significant 

practical value, driving the industry toward intelligent and 

modern development. 
Despite the rapid advancements in deep learning and 

object detection, their applications in lion-head goose 

detection remain limited, with most existing studies focusing 

on poultry such as chickens and ducks. In 2024, Xiao et al. 

proposed DHSW-YOLO[4], a real-time detection model for 

white-feathered Muscovy ducks under varying lighting 

conditions. By simplifying the detection head of YOLOv8 and 

integrating SENet attention and WIoU v3 loss, DHSW-YOLO 

achieved a 2.2% increase in mAP (from 92.2% to 94.4%), 

reduced model size by 2.8 MB, and accelerated inference time 

by 1.2 ms compared to the original YOLOv8. Ji et al. (2024) 

developed YOLO-FSG for chicken feeding behavior 

recognition[5], introducing C2F-FEblock to enhance feature 

extraction and reduce complexity. By replacing traditional 

convolutions and C2F modules with GSConv (group shuffle 

convolution) and VovGSCSP, and optimizing the detection 

head with parameter-sharing grouped convolutions, YOLO-

FSG achieved an mAP@0.5 of 97.1% with 1.94 M parameters 

and 4 GFLOPs, outperforming YOLOv5n, YOLOv7n, and 

YOLOv8n. Pei et al. (2025) improved YOLOv8n for real-time 

dead chicken detection in cage farming[6], incorporating cross 

stage partial hetconv and CSPHet in the backbone, SEAM in 

the Neck, and DySample upsampling. Their method achieved 

an mAP of 95.8% with 2.46 MB parameters, representing a 1.5% 

accuracy improvement and 18.3% parameter reduction 

compared to YOLOv8n. 
To address challenges specific to lion-head goose 

detection, including free-range environments, complex 

backgrounds, significant scale variations, and mutual 



 

 

occlusion, this paper proposes PCN-YOLO, an optimized 

YOLO11-based method. The contributions are threefold: (1) 

Replacing the original C3k2 module with a PKI block 

parallelizes convolution kernels of varying sizes, significantly 

improving multi-scale feature extraction for lion-head geese 

across different poses and scales. (2) Introducing a 

CGAFusion module at the network neck enhances contextual 

information integration, improving target-background 

discriminability and reducing misjudgment. (3) Adopting the 

NWD loss function strengthens contour and edge 

representation, improving detection stability. Experimental 

results demonstrate that PCN-YOLO outperforms YOLO11n 

in precision (1.5% increase), recall (2.3% increase), mAP@50 

(1.7% increase), and mAP@50-95 (1.9% increase), validating 

its effectiveness in complex lion-head goose detection 

scenarios. 

2. Dataset 

The dataset used in this study is derived from the publicly 

available Lion-head Goose Dataset by Yuhong Feng et al.[7], 

which was collected via cameras deployed at a goose farm in 

Chenghai District, Shantou, Guangdong Province, China. The 

dataset contains two subsets: "large geese" and "small geese". 

This paper focuses on the large goose subset, consisting of 

1,949 images. These images were divided into training, 

validation, and test sets at a ratio of 7:2:1, resulting in 1,368, 

392, and 189 images, respectively. 
To enhance the model’s generalization and robustness, a 

series of data augmentation techniques were applied to the 

training set, including horizontal flipping, rotation, brightness 

adjustment, blurring, and noise addition. These augmentations 

expanded the training set to 2,736 images, with a total dataset 

size of 3,317 images. Figure 1 illustrates representative 

samples from the dataset. 

3. Research Methodology 

3.1 YOLO11  

YOLO (You Only Look Once) [8], a groundbreaking 

innovation in object detection, transforms the task into a 

regression problem, enabling end-to-end direct prediction and 

significantly simplifying the detection pipeline. Since its 

inception, the YOLO series has undergone multiple iterations, 

continuously advancing object detection technology[9].The 

baseline model YOLO11 used in this study, as as shown in 

Figure 2, retains the classic backbone-neck-head architecture 

of YOLO while integrating C3k2 and C2PSA modules into the 

 

FIGURE 1. Example of the dataset 

 
backbone and neck structures [10]. This integration maintains 

high performance while reducing computational requirements, 

making it suitable for resource-constrained devices. 
The C3k2 module (Figure 2(e)) processes input feature 

maps through an initial convolution layer for low-level feature 

extraction, followed by splitting into regions and multiple 

repeated C3 blocks. The C3 block efficiently handles 

redundant gradient residuals and enhances information flow 

between dense blocks[11], balancing inference speed and 

detection accuracy. Feature maps are concatenated via a 

Contact layer and further processed by a Convolution-

BatchNorm-SiLU(CBS) layer for final integration. 
The C2PSA module (Figure 2(j)) begins with a CBS 

convolution layer, splitting the feature maps into two branches. 

one preserves raw information, while the other undergoes 

PSABlock processing for feature reinforcement (Figure 2(h)). 

The two branches are concatenated and passed through another 

CBS layer to output fused multi-scale features. This design 

optimizes multi-dimensional feature extraction and fusion, 

improving network expressiveness. 
Leveraging YOLO11’s advantages, this study proposes 

PCN-YOLO, an enhanced model integrating the PKI block, 

CGAFusion module, and NWD loss function. The architecture 

of PCN-YOLO is detailed in Figure 3. 

3.2 PKI Block 

The PKI (Poly Kernel Inception) block was introduced 

by Xinhao Cai et al.[12]. This block consists of the PKI 

module and the Context Anchor Attention (CAA) module, as 

depicted in Figure 4(c). The design of the PKI module is 

inspired by an in - depth analysis of features of targets at 

different scales. Its core idea is to process the input feature map 

with convolution kernels of different sizes to extract multi-  



 

 

 

FIGURE 2. YOLO11 Network architecture 

 

FIGURE 3. PCN-YOLO Network architecture 

 
scale feature information.  

As shown in Figure 4(a), the PKI Module first performs 

multi scale convolution operations on the input feature map. 

Small convolution kernels, such as 3×3 ones, have a strong 

ability to extract local features and can capture fine textures 

and detailed information of the target. For example, for the fine 

features of lion - head geese like feather textures and eyes, 

small convolution kernels can clearly extract them, providing 

accurate local information for subsequent target recognition.  

 

FIGURE 4. Structure of PKI  

 
And the parallel depth - separable convolution kernels of 

different sizes, such as 5×5 and 7×7, can capture context 

information within a larger receptive field. When detecting a 

group of relatively close and large lion - head geese, these large 

convolution kernels can focus on large features like the heads 

and bodies of the geese, compensating for the lack of the small 

convolution kernels in extracting global information. 
The PKI block also integrates the CAA Module, as shown 

in Figure 4(b). The CAA module is an attention - mechanism 

component that fuses context awareness. It realizes refined 

feature weighting by integrating global and local features. 

Specifically, the module first captures the global statistical 

information of the features through average pooling(AvgPool) 

to extract the overall semantic context. Then, it uses two depth 

- separable convolutions(DWConv) to extract local detailed 

features in the horizontal and vertical directions respectively, 

enriching the dimension of feature representation. Finally, it 

generates attention weights through a 1×1 convolution and a 

Sigmoid activation function. 

3.3 CGAFusion Module 

The CGAFusion module, proposed by Zixuan Chen et 

al.[13], adaptively fuses low-level and high-level features by 

learning spatial and channel-wise weights to modulate feature 

responses. In PCN-YOLO, the CGAFusion Module serves as 

the core processing unit, first performing additive fusion on 

input features Flow (low-level features) and Fhigh (high-level 

features), followed by parallel SpatialAtt (Spatial Attention) 

and ChannelAtt (Channel Attention) modules to mine feature 

saliency in spatial and channel dimensions. The SpatialAtt 

Module extracts spatial statistical information via global 

average pooling (GAP) across spatial dimensions and global 

max pooling (GMP) across channel dimensions, generating 

spatial attention weights through ConCat (Concatenation) and 

CBS layer processing to precisely locate critical spatial regions 

of lion-head geese. The ChannelAtt Module aggregates global 

channel information using GAP across channel dimensions, 



 

 

 

FIGURE 5. Structure of CGAFusion  

then generates channel attention weights via a CBS layer and 

Sigmoid activation to select discriminative channels for goose 

detection. After dual-attention processing, the fused features 

undergo secondary fusion, CBS layer processing, Sigmoid 

activation, and final Fusion operations, with a 1×1 CBS 

convolution adapting feature dimensions to produce high-

quality representations balancing spatial localization accuracy 

and channel semantic discriminability for lion-head goose 

detection.The feature fusion formula is expressed as: 
𝐹 = 𝐹low + 𝐹high + 𝐹low × 𝑤 + 𝐹high × (1 − 𝑤)      (1) 
where 𝐹low and 𝐹high denote low-level and high-level 

inputfeatures, respectively, and w represents attention weights 

output by the CGA module. 
Traditional fusion methods like simple concatenation or 

addition neglect semantic differences and contextual 

information between feature levels, combining features 

without adaptive weighting and leading to background 

interference in complex scenes. In contrast, the CGAFusion 

module leverages contextual information and dual spatial-

channel attention to intelligently fuse features, improving 

adaptability to complex environments. For lion-head goose 

detection in cluttered farming scenes, CGAFusion accurately 

identifies goose positions and features using contextual cues, 

minimizing background misjudgment and enhancing accuracy. 

3.4 NWD loss 

In object detection tasks, the design of bounding box 

regression loss directly affects the performance of the 

detection model. Traditional IoU-based losses (such as GIoU, 

DIoU, CIoU) mainly focus on the overlap degree between the 

predicted box and the ground-truth box, while ignoring the 

differences in spatial position and scale between the two, 

which may lead to insufficient adaptability to objects with 

scale changes. In addition, when there is no intersection 

between the predicted box and the ground-truth box, the 

gradient of IoU will disappear, affecting the optimization 

process. Therefore, we introduce the Normalized Wasserstein 

Distance (NWD)[14] into the regression loss to measure the 

matching degree of the spatial position and scale between the 

predicted box and the ground-truth box, thereby improving the 

detection accuracy. 
In this study, let the predicted bounding box 𝐵𝑝 =

(𝑥p1, 𝑦p1, 𝑥p2, 𝑦p2)  and the ground-truth bounding box 𝐵𝑡 =
(𝑥t1, 𝑦t1, 𝑥t2, 𝑦t2) , where (𝑥1, 𝑦1)  and (𝑥2, 𝑦2)  represent the 

coordinates of the top-left and bottom-right corners of the 

bounding box, respectively. First, calculate the IoU loss: 
𝐿IoU = (1 − 𝐼𝑜𝑈) ⋅ 𝑤             (2) 

where IoU is the intersection-over-union of the predicted 

box and the ground-truth box, and w is the object score 

weighting coefficient, making the contribution of high-

confidence objects to the loss greater. 
To enhance the constraint of the loss function on the 

geometric matching of the bounding box, we further calculate 

the Wasserstein-2 distance between the predicted box and the 

ground-truth box. This distance consists of two parts,the 

Euclidean distance of the center point and the scale difference. 

The Euclidean distance of the center point is calculated as 

follows: 
𝑑center = (𝑥p,center − 𝑥t,center)2 + (𝑦p,center − 𝑦t,center)2 + 𝜖 (3) 

where ϵ is a numerical stability factor, and 
(𝑥p,center, 𝑦p,center) and (𝑥t,center, 𝑦t,center) are the center 

coordinates of the predicted box and the ground-truth box, 

respectively: 
𝑥𝑝,center =

𝑥𝑝1+𝑥𝑝2

2
,  𝑦𝑝,center =

𝑦𝑝1+𝑦𝑝2

2
      (4) 

𝑥𝑡,center =
𝑥𝑡1+𝑥𝑡2

2
,  𝑦𝑡,center =

𝑦𝑡1+𝑦𝑡2

2
       (5) 

The scale difference is measured by calculating the width 

and height differences between the predicted box and the 

ground-truth box: 

 𝑑wh =
(𝑤𝑝−𝑤𝑡)

2
+(ℎ𝑝−ℎ𝑡)

2

4
         (6) 

where w and h are the width and height of the bounding 

box, respectively: 
𝑤𝑝 = 𝑥𝑝2 − 𝑥𝑝1 + 𝜖,  ℎ𝑝 = 𝑦𝑝2 − 𝑦𝑝1 + 𝜖   (7)                 

𝑤𝑡 = 𝑥𝑡2 − 𝑥𝑡1 + ϵ,  ℎ𝑡 = 𝑦𝑡2 − 𝑦𝑡1 + 𝜖    (8) 
Finally, the Wasserstein-2 distance is defined as: 

𝑑W
2 = 𝑑center + 𝑑wh              (9) 

According to the definition of the Wasserstein distance, 

the Wasserstein loss function is constructed: 

𝐿W = exp (−
√𝑑W

2

𝐶+𝜖
)             (10) 

where C is a scaling factor (in this paper, C=12.8), used 

to adjust the scale range of the loss, enabling it to optimize 

stably during the training process. Experiments show that the 

Wasserstein loss can effectively improve the model’s 

adaptability to objects with large scale changes. 
In addition, to further optimize the prediction accuracy of 



 

 

the bounding box, the Distribution Focal Loss (DFL) is 

introduced into the loss function. The core idea of DFL is: in 

object box prediction, the left, right, top, and bottom 

boundaries of the bounding box can be expressed as a discrete 

distribution relative to anchor points. Therefore, the ground-

truth box is converted into a discrete distribution, and the error 

between the predicted distribution and the ground-truth 

distribution is calculated: 
 𝐿DFL = DFL(𝑃dist , 𝑇ltrb) ⋅ 𝑤          (11) 

where 𝑃dist  is the predicted boundary distribution, and 

𝑇ltrb  is the discrete target distribution after the ground-truth 

box is converted. 
The final object box regression loss consists of the IoU 

loss, Wasserstein loss, and DFL loss: 
 𝐿𝑁𝑊𝐷 = λIoU𝐿IoU + (1 − λIoU)𝐿W + 𝐿DFL     (12) 

where 𝜆IoU controls the relative contribution of the IoU 

loss and the Wasserstein loss. In this paper, 𝜆IoU = 0.2 is set 

to ensure that the Wasserstein loss plays a more important role 

in the regression task. 
Experimental results show that compared with traditional 

IoU and its variant losses (such as GIoU, DIoU, CIoU)[15], 

the proposed Wasserstein regression loss can achieve higher 

bounding box localization accuracy in detection tasks, 

especially performing exceptionally well in scenarios with 

large object scale changes. For example, in the lion-head goose 

detection task, this method can more accurately capture the 

object contour, improving the stability and robustness of 

detection. 

4. Experimental Results and Discussions 

4.1 Experimental Platform and Evaluation Metrics 

All experiments in this paper were conducted using the 

cloud servers of Parallel Intelligent Computing Cloud 

Company. The development framework was PyTorch 2.2.0 

and Ubuntu 22.04. The server was configured with an RTX 

4090 GPU with 24GB of video memory and a 10v AMD 

EPYC 7402 CPU. The training parameters were set as follows: 

the number of epochs was set to 300, the batch - size was set 

to 32, the image input size was 640, and the optimizer used for 

training was Adaptive Moment Estimation (Adam). 
In the lion - head goose target detection task, evaluation 

metrics are important for measuring the performance of the 

model. The number of parameters refers to the total number of 

trainable parameters in the model, which determines the 

model's storage requirements and complexity. The 

computational complexity (GFLOPs, Giga Floating Point 

Operations) measures the number of floating - point operations 

performed by the model during the inference process, which 

determines the model's computational cost. Precision (P) and 

Recall (R) are core metrics in target detection, used to evaluate 

the model's detection accuracy and recall ability. Precision 

measures the proportion of detected lion - head goose targets 

that are actually lion - head geese, while Recall measures the 

proportion of all lion - head goose targets that are successfully 

detected. Their calculation formulas are as follows: 
𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
,  𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
             (13) 

TP (True Positives) represents the number of correctly 

detected lion - head goose targets, FP (False Positives) 

represents the number of falsely detected negative samples, 

that is, the number of times the model incorrectly identifies the 

background or other objects as lion - head geese, and FN (False 

Negatives) represents the number of lion - head goose targets 

that fail to be detected, that is, the number of real lion - head 

goose targets that the model fails to recognize. High Precision 

means a low misclassification rate of detected targets, while 

high Recall means that more real targets are successfully 

recognized. However, there is usually a trade - off between the 

two. An increase in Precision may lead to a decrease in Recall, 

and vice versa. 
 To more comprehensively evaluate the performance of 

the detection model, Average Precision (AP) and mean 

Average Precision (mAP) are commonly used. AP measures 

the area under the Precision - Recall curve, representing the 

model's average precision at different recall rates. Its 

calculation formula is as follows: 
𝐴𝑃 = ∫ 𝑃(𝑅)

1

0
 𝑑𝑅,  𝑚𝐴𝑃 =

1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1      (14) 

where N is the total number of target categories. In the lion 

- head goose target detection task, N is 1, meaning that mAP is 

calculated only for the lion - head goose category. mAP@50 

(mAP@50) represents the mAP when the IoU threshold is 

fixed at 0.5, while mAP@[.50:.95] (mAP@50 - 95) is the 

mean value calculated at different IoU thresholds from 0.5 to 

0.95 (with a step size of 0.05), which can more 

comprehensively measure the detection accuracy of the 

detector under different matching criteria. 

4.2 Ablation experiments 

To validate the contributions of the proposed PKI, 

CGAFusion, and NWD loss function to lion-head goose 

detection, ablation experiments were conducted. By 

sequentially removing each module and comparing results 

under identical experimental conditions and datasets, the 

independent effects and combined performance of each 

component were analyzed. The experimental results are shown 

in the table 1. 
The baseline model achieved P of 88.1%, R of 82.9%, 

mAP@50 of 90.1%, and mAP@50-95 of 54.8%. Introducing 

PKI improved P to 89.1%, R to 83.8%, mAP@50 to 91.2%, 



 

 

TABLE 1. Ablation experiments 

 
and mAP@50-95 to 55.6%. This indicates PKI enhances target 

discriminability through improved feature representation, 

reducing false positives and missed detections. Adding only 

CGAFusion increased P to 88.8%, R to 83.6%, mAP@50 to 

90.7%, and mAP@50-95 to 55.7%, demonstrating its ability 

to stabilize multi-scale detection via cross-scale global feature 

aggregation. Using only NWD loss improved P to 89.1%, R to 

83%, and mAP@50 to 90.6%, optimizing bounding box 

matching quality and reducing degradation issues through 

Wasserstein distance minimization. 
The combination of PKI and CGAFusion further boosted 

P, R, mAP@50 and mAP@50-95 to 89.2%, 84.8%, 91.4%, and 

56.4% respectively. Finally, integrating all three components 

achieved optimal performance, increasing P, R, mAP@50, and 

which outperforms the YOLOv8n model by 1.5%, 2.3%, 1.7%, 

and 1.9% in these metrics. 
These results confirm that PKI strengthens feature 

extraction, CGAFusion enhances multi-scale adaptability, and 

NWD improves localization accuracy. Their combined 

implementation significantly advances lion-head goose 

detection in complex farming environments. 

4.3 comparison with other networks 

To validate the effectiveness of the method proposed in 

this paper, comparative experiments were conducted among 

YOLOv8n, YOLOv9t, YOLOv10n, YOLO11n, YOLO12n, 

and the PCN - YOLO proposed in this paper. The evaluation 

metrics included the number of parameters, computational 

complexity, Precision (P), Recall (R), mAP@50, and 

mAP@50-95. The experimental results show that YOLO11n 

has the best overall performance among the existing models, 

so it was selected as the baseline model. Compared with 

YOLO11n, PCN - YOLO increases P by 1.5%, R by 2.3%, 

mAP@50 by 1.7%, and mAP@50-95 by 1.9% with little 

change in the number of parameters and computational 

complexity. This validates the effectiveness of the PKI, 

CGAFusion, and NWD loss functions, enabling the model to 

achieve better performance in the lion - head goose target 

detection task. The comparative experimental results are 

shown in Table 2. 

TABLE 2. Comparative experiments 

 Param 
eters 

GFLOP 
s 

P R mAP 
@50 

mAP 
@50-95 

YOLOv8n 2,684,563 6.8 0.879 0.823 0.899 0.535 
YOLOv9t 1,730,019 6.4 0.878 0.831 0.899 0.536 

YOLOv10n 2,265,363 6.5 0.869 0.83 0.902 0.538 
YOLO11n 2,582,347 6.3 0.881 0.829 0.901 0.548 
YOLO12n 2,556,923 6.3 0.874 0.832 0.901 0.545 

PCN-YOLO 2,970,972 10.0 0.896 0.852 0.918 0.567 
 

4.4 visualization of experimental results 

To visually demonstrate the performance of different 

models in lion-head goose detection, this paper selects four 

representative samples for visualization analysis. The results  
are presented in Figure 6, where the first row displays lion-

head goose detection results from the YOLO11n model and the  
second row shows PCN-YOLO outputs. Here, blue bounding 

boxes represent model detections, yellow bounding boxes 

highlight missed targets, and red bounding boxes denote false 

positive cases. Although YOLO11n accurately detects targets 

under most conditions, it still exhibits missed detections and 

localization errors in scenarios with dense geese, occlusion, or 

blurred boundaries. By contrast, PCN-YOLO more accurately 

identifies overlapping geese and reduces missed detections and 

false positives. These visual results further validate the 

effectiveness of PCN-YOLO in addressing real-world 

challenges in goose farming environments. 

 

FIGURE 6. Comparison of YOLO11n and PCN-YOLO results 

PKI CGAFusion NWD_loss Parameters GFLOPs P R mAP@50 mAP@50-95 
× × × 2,582,347 6.3 0.881 0.829 0.901 0.548 
√ × × 2,582,787 7.7 0.891 0.838 0.912 0.556 
× √ × 2,970,532 8.7 0.888 0.836 0.907 0.557 
× × √ 2,582,347 6.3 0.891 0.83 0.906 0.546 
√ √ × 2,970,972 10.0 0.892 0.848 0.914 0.564 
√ √ √ 2,970,972 10.0 0.896 0.852 0.918 0.567 



 

 

5. Conclusions and Future Work 

In this paper, we propose the PCN-YOLO model for lion-

head goose detection, which significantly improves detection 

accuracy and localization capabilities by integrating the PKI 

block,CGAFusion and NWD loss function into the YOLO11n 

framework.Ablation and comparative experiments 

demonstrate that PCN-YOLO outperforms existing object 

detection models across multiple metrics, particularly 

showcasing robust performance and higher accuracy in 

complex scenarios involving dense targets and occlusion. 

Additionally, visualization results validate the model’s 

effectiveness in real-world applications, with notable 

improvements in precision, recall, and localization accuracy. 
For future research, we aim to optimize computational 

efficiency and explore lightweight network architectures to 

enable real-time detection on resource-constrained devices. 

Given the practical demands of lion-head goose detection, we 

will also enhance the model’s generalization to diverse 

environmental conditions, including varying lighting, weather, 

and dynamic scenes. Furthermore, comprehensive evaluations 

using expanded datasets will be conducted to validate the 

broad applicability of our approach across different domains. 
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