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Abstract: Abstract: To tackle the issue of labeling for AI training, 
this paper firstly introduces a semi-automatic big data labeling 
method based on confusion area analysis (CAA), minimizing 
labeling effort and precisely identify classification errors caused 
by unsupervised clustering algorithms. Initially, the method 
utilizes unsupervised clustering algorithms to automatically 
classify big data, followed by identifying confusion areas based on 
classification results. The vast majority of data resides in non-
confusion areas, where each cluster can be manually labeled with 
minimal effort. Only the small fraction of data in confusion areas 
requires individual manual labeling. Experimental results 
indicate that the manual labeling rate can be reduced to less than 
1%, while the accuracy of the semi-automatically labeled data 
can reach 90.78%, surpassing previous approaches. Moreover, 
this work proposes a method for data parameter transformation 
to enhance the efficiency of unsupervised learning and further 
reduce manual labeling rates. Instead of using traditional 
Cartesian coordinates, this work develops the polar coordinate 
and fingerprint parameter transformations, based on scale-
invariant feature transform (SIFT) algorithm, for handwritten 
digit recognition, where the experimental results demonstrate an 
improvement in unsupervised learning accuracy by 1-3%, with 
the overall accuracy of semi-automatically labeled data reaching 
93.39%. Keywords: semi-automatic labeling, unsupervised 
learning, confusion area analysis, handwritten digit recognition.  

1. Introduction 

The outstanding performance of AI supervised learning 

frameworks has been widely applied in various fields. 

However, supervised learning requires a large amount of 

labeled data for training, which necessitates professional 

expertise and consumes significant time. Therefore, automatic 

labeling of big data has become a critical research topic. In 

previous studies, Hinkle et al. [1] introduced an interactive UI 

with visual synchronization, parameter display, and time-

series visualization tools to assist in manually labeling big data. 

Desmond et al. [2] proposed predictive models to guide and 

assist manual labeling; these predictive models learn by 

continuously observing the manual labeling process and 

integrate UI tools to facilitate manual labeling. Although these 

methods utilize UI tools to accelerate the labeling process, 

manual effort is still required to label each data point 

individually. The manual labeling rate for these methods 

remains as high as 100%.  
Moreover, Ferreira et al. [3] proposed a supervised 

method using Support Vector Machines (SVM) to learn from 

10% of pre-labeled text data. The remaining 90% of the text 

dataset is then automatically labeled, achieving a semi-

automatic labeling goal with an accuracy of up to 98%. 

However, this method requires at least 10% of the data to be 

manually labeled, and it lacks analysis and discussion on more 

ambiguous or confusing data. By combining multiple 

parameter transformations and various unsupervised methods, 

Vajda et al. proposed semi-automatic labeling methods [4–7], 

which first automatically cluster big data, and then categorize 

data based on multiple clustering results using a majority-vote 

strategy. This approach requires minimal manual labeling 

effort to achieve a semi-automatic labeling goal. For example, 

using the MNIST handwritten digit database, an accuracy of 

89.13% was achieved.  
This study, similar to the purpose of the works proposed 

by Vajda et al. in [4–7], aims to develop a semi-automatic 

annotation system based on unsupervised methods. However, 

the approaches adopted to achieve this objective are 

fundamentally different. In [4–7], a voting mechanism is 

employed to determine the correct labels for the data, which is 

not only time-consuming but also requires a larger quantity of 

annotated data, thereby increasing the system’s overall 

workload. In contrast, the method proposed in this study 

focuses on identifying ambiguous regions within the data and 

performing precise annotations specifically in those areas, 

thereby improving annotation accuracy and system efficiency. 

This paper proposes a method focused on detecting confusing 

data, with the primary goal of improving the accuracy of 

automatic labeling. Initially, the method leverages 

unsupervised learning to extract a very small amount of data 

prone to classification errors, followed by manual labeling. 

Experimental results demonstrate that the proposed method 

achieves exceptionally high recognition accuracy (%) in semi-



 

 

automated big data labeling, while maintaining a very low 

manual labeling ratio (%).  
The rest of the paper is organized as follows: Section 2 

details the confusion area detection method, Section 3 presents 

experimental results and analyzes system performance, and 

Section 4 concludes the study. 

2. The Proposed Methodology 

The classification of large data sets requires professional 

expertise, which implies substantial manual effort. Therefore, 

the development of semi-automatic labeling techniques for 

large data is the focus of this paper. Within large data sets, the 

majority of data points in multidimensional space cluster 

together, forming distinct groups, as illustrated in Figure 1. 

These distinct clusters represent different characteristics and 

classifications of the data. However, a small portion of the data 

exhibits ambiguous spatial distributions, which we refer to as 

"confusing data (CD)". These data reside in the boundary 

regions between two clusters, known as "confusion areas 

(CA)". Such data often lead to misclassification during 

automatic categorization. Consequently, relying solely on 

unsupervised learning with limited parameters is insufficient 

to accurately classify these confusing data. 
Therefore, this paper proposes a confusion area detection 

method. The method aims to identify confusion areas precisely 

and within a small scope to encompass confusing data as much 

as possible. Manual labeling is then applied to these confusing 

data to improve the accuracy of semi-automatic labeling. 
 

 
Figure 1. Illustration of confusing data in clustering: the cluster 

centroids and confusion boundaries. 
 

2.1 The Confusing Data Detection (CDD) Algorithm 
To classify these confusing data, the proposed confusing 

data detection (CDD) algorithm begins with unsupervised 

clustering algorithms to classify (M) data points (𝑋𝑖 , 1 ≤ 𝑖 ≤

𝑀) into N clusters (codewords). Next, the centroids of the N 

clusters (𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑁) are calculated. Subsequently, for each 

data point 𝑋𝑖, the two closest centroids (e.g., 𝐶𝑖1 and 𝐶𝑖2) are 

identified. Finally, based on distance ratios or boundary 

conditions, the confusing data are determined through 

Methods 1 and 2 as described in Algorithm 1. The detailed 

steps are presented below: 
 

Algorithm 1.  The methodology for the CDD algorithm 
Step Action description  

1 
Use unsupervised algorithm (e.g., vector quantization 

(VQ) or self-organizing map (SOM) algorithm to classify 

unlabeled Data(𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑀) into N clusters. 

2 
Calculate the centroid C𝑗   of j-th cluster. C𝑗 =
1

𝑁𝑗

∑ 𝑋𝑘
𝑁𝑗

𝑘=1
, 1 ≤ 𝑗 ≤ 𝑁, 𝑁𝑗 is the number of data point 𝑋𝑖 

which is fall in j-th cluster. 

3 The number 𝑛 of confusing data is set to zero. 𝑛 & 𝑖 set to 

0. 

4 

Method 1:   
1. For data point 𝑋𝑖 , search the centroid C𝑖1  and C𝑖2 , 

which are the closest and second closest centroids to 

the data sample 𝑋𝑖. 

2. Calculate the distance ratio 𝑅𝑖 =
||𝑋𝑖−C𝑗1||

||𝑋𝑖−C𝑗2||
 

3. If |𝑅𝑖 − 1.0| < 𝛿  , then the data point 𝑋𝑖  is set as 

confusing data. (𝛿 is a small value) 
 
Method 2:   
1. For data point 𝑋𝑖, search the centroid C𝑖, which is the 

closest centroid to the data point 𝑋𝑖. (i.e. C𝑖 = C𝑖1) 
2. Calculate the maximum distance 𝐷𝑗 = max(||𝑋𝑖 −

C𝑖||) 
3. If 𝐷𝑖𝑗/𝐷𝑗 > 𝜀 , then the data point 𝑋𝑖  is set as 

confusing data under the condition. ( 𝜀  is a small 

value) 
5 Next i, Repeat Step.4, until 𝑖 ≥ 𝑁 

 
Finally, manual labeling is applied to the categories of N 

codewords and n confusing data points. Therefore, the 

manually labeling rate (MLR) is calculated as (𝑁 + 𝑛)/𝑀 . 

The confusion values δ and ε are numbers close to 0 and 1, 

respectively. The selection of δ and ε is determined by the 

percentage of the most confusing data points to be extracted. 

As for the accuracy analysis of semi-automatic labeling, it 

relies on manually labeled data for evaluation. In this study, 

we use the handwritten MNIST dataset for analysis, and 

detailed experimental data analysis is presented in the next 

section. 

2.2 Feature Parameter Transformations 
Furthermore, for the CDD algorithm, this paper adopts 

unsupervised clustering methods such as VQ and SOM. It also 



 

 

employs multiple feature parameter transformations, including 

Cartesian coordinate data, polar coordinate transformation, 

and fingerprint transformation for cross-referencing. Note that 

the Cartesian coordinate data and polar coordinate 

transformation respectively present the original image data 

type and the conversion of the Cartesian coordinate system to 

polar coordinates.  
For the fingerprint transformation, the original data is 

subjected to circular segmentation. Assuming the angle is 

divided into A segments and the radius is divided into S 

segments, the resulting fingerprint data dimensions are A*S.     

This method applies the concept of scale-invariant feature 

transform (SIFT) algorithm, where each dataset is segmented 

and computed based on different kernels to create fingerprint 

data. Since the fingerprint data dimensions obtained from each 

kernel are identical, this method is highly suitable for 

clustering using VQ or SOM. The following are kernels 

applied for image feature transformation: 
⚫ Kernel 1:  After dividing the angles and radius 

evenly, the average value within each region is 

calculated as the fingerprint parameter. 
⚫ Kernel 2:  After evenly segmenting the angles and 

radius, the average value and standard deviation of 

all points within each region are computed as the 

fingerprint parameters. 
⚫ Kernel 3:  The original image radius is mapped to 

an exponential function space to achieve 

exponential distribution segmentation larger blocks 

near the center and finer ones towards the edges. 

The average value within each region is then 

computed as the fingerprint parameters. 
⚫ Kernel 4: Following uniform division of angles and 

radius, the average value within each region is 

calculated as the fingerprint parameter. The process 

is repeated with the image rotated ±5 degrees, 

generating additional fingerprint parameters. 
Detailed experimental data and performance analyses are 

presented in Section 3. 

3. Performance Evaluation 

Section 3 conducts experimental verification of the 

proposed semi-automatic labeling algorithm based on CA 

analysis. The dataset used for verification is the MNIST 

handwritten digit dataset, consisting of 60,000 training 

samples and 10,000 testing samples. Each data point has a 

manually labeled ground truth, making it highly suitable for 

performance evaluation of the accuracy of semi-automatic 

labeling algorithms. The experiments are divided into two 

parts. The first part evaluates the performance of unsupervised 

classification algorithms, while the second part focuses on the 

performance evaluation of the CDD algorithm, which is the 

core emphasis of this paper. 

3.1 Performance with Feature Transformations 
In the first part, the unsupervised classification 

algorithms (i.e., VQ and SOM) are applied. Three types of 

feature parameters, including Cartesian coordinate data, polar 

coordinate data, and fingerprint-transformed data, are tested 

for cross-verification. Table 1 presents the accuracy of 

automatic classification. From Table 1, it is evident that 

unsupervised clustering on the MNIST dataset achieves an 

automatic classification accuracy of up to 91.53%. Among the 

algorithms, SOM slightly outperforms VQ, and in terms of 

feature transformations, fingerprint transformation and polar 

coordinate transformation slightly outperform Cartesian 

coordinates. This part of the results, compared to the accuracy 

rate of 89.13% reported in [4], demonstrates an improvement 

of 2.4%, reaching 91.53%. This indicates a slight enhancement 

in the accuracy of automatic classification achieved by the 

proposed method in this study.  
As shown in Table 1, there is no significant difference in 

classification accuracy between the Kernel-based method and the 

Cartesian-based method. However, a clear difference can be observed 

in terms of data size. When the data size decreases, meaning the 

number of data points is reduced, the classification time is shortened 

accordingly, which enhances classification efficiency. Furthermore, 

Table 2 presents the corresponding data sizes for each Kernel and 

Cartesian method, further illustrating the differences in data volume 

between these approaches. 
 
TABLE 1.  Correction Rate with different unsupervised methods and 

feature transformations. 
Feature                          Alg. VQ SOM 
Cartesian Coordinate 90.22% 91.41% 
Fingerprint (Kernel 1) 90.91% 91.46% 
Fingerprint (Kernel 2) 90.36% 91.53% 
Fingerprint (Kernel 3) 90.33% 90.82% 
Fingerprint (Kernel 4) 90.65% 91.36% 

 
TABLE 2.  Comparison of Data Sizes for Each Kernel and Cartesian 

Method 
Feature                    Data Size (Number of Data Points) 
Cartesian Coordinate 784 
Fingerprint (Kernel 1) 512 
Fingerprint (Kernel 2) 512 
Fingerprint (Kernel 3) 512 
Fingerprint (Kernel 4) 512 

 

3.2 Performance of the CDD Algorithm 
The second part of the experimental verification analyzes 

the performance of the CDD Algorithm, which is used to 

identify mislabeled data resulting from automatic clustering 

and classification of large datasets. Initially, the relevant 



 

 

parameters of the algorithm are defined in Table 3. 

TABLE 3.  Relevant parameters of the CDD algorithm 

Parameters definition 

M The number of large dataset entries. (MNIST 
dataset size, M = 60,000) 

N 

The number of clusters (Codewords) after 

unsupervised automatic clustering. The MNIST 

dataset contains 10 categories, so N must be 

greater than or equal to 10. At this stage, these N 

clusters are manually labeled into categories. 

E 
The number of classification errors after 

unsupervised automatic clustering and labeling of 

large datasets. (Based on Table 1, 𝐸 ≈ 𝑀 ∗ 10%) 

D 
The maximum distance from the center point to 

the boundary within a cluster after automatic 

clustering. 

R The ratio of the distance of each data point to its 

two closest cluster centroids. 

K1 (k1%) 

Using the Algorithm 1 with Method 1, the ratio of 

the distance of each data point to its two closest 

cluster centroids is calculated to identify and 

delineate the confusion area data, R ≥ k1%. 

K2 (k2%) 
Using the Algorithm 1 with Method 2, a total of 

K2 data points with boundary range distance 

(k2%) were identified as confusing data, D ≥ k2%. 

C (c%) 
The number of mislabeled data points among the 
K data points identified by the Algorithm 1, where 
C = K ∩ E and c% =

C

K
. 

P (p%) 
The number and proportion of manually labeled 

data points, where P = N + K and p% =
P

M
. 

Q (q%) 
The total number and proportion of correctly 

labeled classifications, where Q = M − (E − C) 

and p% =
Q

M
. 

 
In the semi-automatic labeling and classification results 

under the VQ with Cartesian model, the dataset consists of a 

total of 60,000 data points (M = 60,000). The unsupervised VQ 

clustering method groups the data into 256 clusters (N = 256). 

After clustering, these 256 clusters are manually labeled into 

categories from 0 to 9. Subsequently, the 60,000 data points 

are quantized and automatically labeled based on these 256 

clusters. Among them, 6,000 data points (10%) had 

discrepancies between VQ automatic classification and their 

original classifications, resulting in (E = 6,000) automatic 

classification errors. 
Based on the aforementioned unsupervised clustering 

results, the Algorithm 1 is used to identify and analyze the top 

1% to 10% of the most confusing data points. Tables 4 through 

7 present various metrics, including the hit rate (c%) of 

confusing data detection, the ratio of manually labeled data (P, 

p%), and the overall accuracy of labeling and classification (Q, 

q%).  
 

TABLE 4. VQ with Method 1 
K1(k%) 874 

(0.99) 
2289 

(0.98) 
4218 

(0.97) 
6192 

(0.96) 
8194 

(0.95) 
C (c%) 196 

(22.4%) 
501 

(21.8%) 
862 

(20.4%) 
1271 

(20.5%) 
1656 

(20.2%) 
P (p%) 1130 

(1.89%) 
2545 

(4.24%) 
4474 

(7.46%) 
6448 

(10.7%) 
8450 

(14.0%) 
Q (q%) 90.87% 91.38% 91.98% 92.66% 93.31% 

 
TABLE 5. VQ with Method 2 

K2(k%) 297 

(1%) 
472 

(5%) 
809 

(10%) 
2155 

(20%) 
5629 

(30%) 
C (c%) 141 

(47.4%) 
216 

(45.7%) 
349 

(43.1%) 
790 

(32.9%) 
1705 

(30.2%) 
P (p%) 553 

(0.92%) 
728 

(1.21%) 
1065 

(1.77%) 
2411 

(4.02%) 
5885 

(9.81%) 
Q (q%) 90.78% 90.90% 91.13% 91.86% 93.39% 

 
TABLE 6. SOM with Method 1 

K1(k1%) 3919 

(0.99) 
7630 

(0.98) 
10994 

(0.97) 
14211 

(0.96) 
17090 

(0.95) 
C (c%) 681 

(17.3%) 
1286 

(16.8%) 
1770 

(16.1%) 
2192 

(15.4%) 
2569 

(15.0%) 
P (p%) 5519 

(9.20%) 
9230 

(15.3%) 
12594 

(20.9%) 
15811 

(26.3%) 
18690 

(31.1%) 
Q (q%) 92.36% 93.36% 94.17% 94.88% 95.50% 

 
TABLE 7. SOM with Method 2 

K2(k%) 1717 

(1%) 
3147 

(5%) 
6496 

(10%) 
20016 

(20%) 
38512 

(30%) 
C (c%) 488 

(28.4%) 
876 

(27.8%) 
1561 

(24.0%) 
3468 

(17.3%) 
4903 

(12.7%) 
P (p%) 3317 

(5.53%) 
4747 

(7.91%) 
8096 

(13.4%) 
21616 

(36.0%) 
40112 

(66.8%) 
Q (q%) 91.85% 92.50% 93.64% 96.82% 99.21% 

4. Discussion 

The results of this study indicate that data located at the 

boundaries of clusters are more prone to classification errors, 

leading to higher confusion rates. Compared to data within the 

cluster, boundary data exhibit vague feature distributions with 

smaller differences from neighboring clusters, making it more 

challenging for classifiers to distinguish them accurately. 
In detecting confusion areas, VQ outperforms SOM as the 

confusion areas identified by VQ contain a higher proportion 

of confusing data. According to the experimental results in 

Section 3, the confusion areas delineated by VQ encompass a 

larger proportion of confusing data, demonstrating its stronger 

capability in detecting cluster boundaries. This may be 

attributed to the vector quantization mechanism of VQ, which 

allows it to more precisely identify highly confusing regions 



 

 

and enhance its ability to capture confusing data. 
 According to the experimental results in Section 3, VQ 

with Method2 demonstrates the best performance in detecting 

cluster boundaries, capturing up to 47.4% of confused data. 

Regardless of whether VQ or SOM is used, Method2 

consistently achieves higher accuracy with fewer labeled 

samples, highlighting its efficiency in reducing annotation 

effort while maintaining classification performance. 

5. Conclusion 

 This study explores the application of semi-automatic 
annotation technology based on confusion area analysis in 
image processing and verifies its effectiveness in improving 
classification accuracy and efficiency. The proposed algorithm 
effectively identifies confusion area in image classification, 
allowing manual annotation to focus on key data points, 
thereby reducing annotation costs while enhancing 
classification performance. The results show that combining 
confusion area analysis with unsupervised classification 
significantly reduces annotation time and labor costs while 
maintaining classification performance comparable to 
supervised methods. Additionally, selecting appropriate 
feature transformation methods and unsupervised 
classification techniques can further enhance model accuracy, 
making this approach more adaptable and practical. However, 
challenges remain, as the performance of unsupervised 
classification may be limited in more complex image datasets. 
Future research should focus on improving feature selection 
strategies and confusion area identification, as well as 
integrating deep learning techniques to enhance model 
adaptability.  

In conclusion, this study proposes an effective 
combination of semi-automatic annotation and unsupervised 
classification, offering a promising solution for image 
classification, especially for large-scale datasets with high 
annotation costs. Future work will emphasize optimizing 
confusion area analysis, improving automatic annotation 
accuracy, and incorporating advanced machine learning and 

deep learning techniques to further expand the applicability of 
this approach. 
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