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Abstract: 
This study investigates how pose estimation can enhance 

violence detection using the RWF-2000 dataset and a 
ConvLSTM-based approach. Pose estimation was integrated into 
the method by employing MoveNet to extract skeletal key points 
from video frames, enabling the system to focus on movement 
patterns for more effective detection of violent actions. Two 
versions of the model were trained: one using the original dataset 
and another with a pose-estimated variant. The results 
demonstrate that the pose-estimation variant achieved higher 
accuracy, precision, recall, specificity, and F1 score compared to 
the base version. These improvements indicate that pose 
estimation enhances the model's ability to interpret movements 
by minimizing irrelevant background details and emphasizing 
critical motion patterns. This research highlights the potential of 
skeletal data to improve the reliability and accuracy of violence 
detection, supporting advancements in surveillance and action 
recognition systems. 
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1. Introduction 

  The detection of violence through image-based classification 
has become a focal point in Deep Learning (DL) research [1]. 
The widespread adoption of surveillance technologies, such as 
CCTV, Body-Worn Cameras, and Smartphone cameras has 
enabled the development of Automatic Violence Detection 
(AVD) systems. These systems are important for real-time 
surveillance in densely populated areas which are prone to 
violent incidents. It enhances law enforcement capabilities and 
ensures community safety. Additionally, the rapid spread of 
graphic content, such as videos containing violence can trigger 
harmful social behaviors, underscoring the urgent need for 

reliable AVD systems to maintain public order [2], [3]. 
Traditional violence detection methods relied on 

handcrafted features like Histograms of Oriented Gradients 
(HOG) and optical flow. They struggled to handle the 
complexities of human interactions and variable backgrounds 
often present in real-world videos [4]. These limitations 
encouraged the adoption of deep learning methods, with 
Convolutional Neural Networks (CNNs). They are becoming 
a preferred approach for extracting spatial features from 
images [5]. CNNs have demonstrated their effectiveness in 
activity recognition tasks by capturing rich spatial information 
from video frames [6]. However, CNN-only models fall short 
when it comes to modeling temporal dynamics essential for 
understanding violent behaviours. This gap has led to the 
exploration of architectures that integrate both spatial and 
temporal modeling. 

To address the need for spatiotemporal analysis, 
researchers have proposed models like 3D CNNs, which 
extend convolutional operations to the temporal dimension. 
While 3D CNNs effectively learn spatiotemporal features, 
they are computationally expensive and can overfit when 
trained on limited datasets [7]. The Hierarchical Recurrent 
Neural Network (HRNN) for skeleton-based action 
recognition introduces a structure where human joint data is 
processed hierarchically to retain spatial hierarchies while 
modeling temporal sequences [8]. By grouping joints in a way 
that preserves their spatial relationships before applying 
recurrent layers to capture temporal dependencies, this 
approach efficiently interprets complex motion patterns. An 
alternative approach is the ConvLSTM model, which extends 
traditional LSTMs by introducing convolutional operations to 
process video data while preserving spatial information. 
ConvLSTM has shown ability to efficiently manage 
spatiotemporal sequences, making it well-suited for video 
analysis tasks [9], [10]. 



 

 

Despite these advancements, accurately detecting violent 
activities remains challenging under varying conditions, such 
as occlusions, low lighting, and background noise. These 
factors disrupt a model's ability to focus on essential human 
movements. By focusing on human skeletal features, pose 
estimation reduces background distractions and emphasizes 
movement-related features. Methods like OpenPose and 
MoveNet are particularly effective at tracking key body points, 
improving action recognition when appearance-based cues are 
insufficient [11], [12]. 

In violence detection, the integration of pose estimation 
has shown promising results. Studies such as [13] have used 
skeletal data extracted with OpenPose, demonstrating 
enhanced performance compared to models trained on raw 
video data. Similarly, a study highlighted that skeletal features 
can capture critical cues of violent movements, although 
challenges like managing multiple individuals and achieving 
real-time performance remain [14]. Comparative studies have 
shown that while pose-based models often outperform 
traditional models in crowded settings, they may struggle 
when skeletal information alone is inadequate for capturing 
complex interactions [15]. 

 In this study, we investigate the impact of pose 
estimation on violence detection performance using the RWF-
2000 dataset. The main contributions of this paper are: 

 
1. Enhanced violence detection by integrating 

MoveNet-based pose estimation with ConvLSTM to 
improve spatio-temporal feature extraction.   

2. Conducted a detailed comparison of models trained 
on original and pose-estimated RWF-2000 datasets, 
evaluating performance metrics such as accuracy, 
precision, recall, and F1 score.   

3. Developed an efficient, scalable framework for 
surveillance and content moderation, addressing 
challenges like occlusions and background noise 
through pose-enhanced video analysis. 

2. Datasets 

       In this study, we used the RWF-2000 dataset [16], which 
consists of 2000 short videos categorized into two classes: 
Violent and Non-Violent. Each short video is 5 seconds long, 
recorded at 30 frames per second, and sourced from YouTube. 
These short videos are derived from authentic surveillance 
footage, encompassing a diverse range of resolutions and 
lighting conditions. The dataset captures various forms of 
violence, including one-on-one Violents and crowd 
disturbances, across different settings such as indoor and 
outdoor environments. This diversity and realism make the 
RWF-2000 dataset an excellent choice for developing and 

evaluating a robust violence detection model. 

3. Proposed Method 

      This study explores the transformative potential of pose 
estimation in enhancing violence detection performance using 
the RWF-2000 dataset. We develop a two-stage approach 
where in the original dataset undergoes pose estimation 
preprocessing, extracting skeletal body landmarks that capture 
detailed movement characteristics. Two identical ConvLSTM 
models are subsequently trained—one on the original dataset 
and another on the pose-estimated variant, enabling a rigorous 
comparative evaluation of detection capabilities. By 
maintaining a consistent architectural framework, we isolate 
the impact of pose estimation, providing insights into how 
skeletal representations can potentially improve the 
computational understanding of violent actions. This approach 
not only addresses the computational challenges in violence 
detection but also demonstrates the value of preprocessing 
techniques in enhancing deep learning model performance. 
The comparative analysis offers a comprehensive assessment 
of pose estimation's efficacy, potentially opening new avenues 
for intelligent video surveillance and action recognition 
systems. Figure 1 provides a comparative overview of two 
models demonstrating the method overview.  
 
 

 

 

FIGURE 1. Method Overview 

3.1. Dataset Preprocessing 

     In the initial step, the video files are divided into 24 frames, 
where each frame has a shape of (120, 120, 3). Each set of 
frames is paired with a label indicating whether the video 
shows a violent or a Non-violent scenario. The data is then 
shuffled to ensure randomization. The RWF-2000 dataset 



 

 

consists of a total of 2000 videos, with an equal split between 
violent and non-violent categories. From this dataset, 1600 
videos (800 violent and 800 Non-violent) are added to the 
training set, 200 videos (100 violent and 100 non-violent) to 
the validation set, and the remaining 200 videos (100 violent 
and 100 non-violent) to the test set. Finally, the data is batched 
with a batch size of 16, resulting in an 80% training, 10% 
validation, and 10% testing split of the overall dataset. 

3.2. Pose Estimation 

     For pose estimation, we employed TensorFlow’s pretrained 

“MoveNet” model, a state-of-the-art approach that identifies 
17 key points on the human body. MoveNet operates as a 
bottom-up estimation model, utilizing heatmaps to precisely 
locate these key points. Its architecture consists of two main 
components: a feature extractor and prediction heads. The 
prediction head is loosely inspired by CenterNet [17], while 
the feature extractor is a modified version of MobileNet [18]. 
MoveNet offers two variants, Lightning and Thunder; we 
selected the multipose version of the Lightning variant to 
enable detection of multiple individuals within each frame. To 
create a pose-estimated version of the RWF-2000 dataset, we 
processed each video by iterating through its frames and 
applying the MoveNet model on each one. For each detected 
person in a frame, we annotated the key points and connected 
them accordingly. Once all persons in a frame were estimated, 
we removed the background, leaving only the skeletal 
representations. This process was repeated across the dataset, 
resulting in the Pose Estimated RWF-2000 dataset. 

Following the pose estimation process, Figure 2 visually 
demonstrates the transformation of the RWF-2000 dataset 
through the application of the MoveNet model. The first 
column represents the original input frames, while the second 
column displays the pose-estimated outputs with the 
background retained. The final column illustrates the 
processed frames with background removal, leaving only 
skeletal representations of detected individuals. 

 If we assess its performance across various scenarios, the 
first row demonstrates the model's effectiveness in accurately 
identifying and connecting key points on a single individual, 
highlighting its precision under ideal conditions. The second 
row shows the model’s performance in group settings, where 

closely positioned or overlapping individuals introduce 
moderate challenges, occasionally leading to minor 
inaccuracies in key point localization. The third row illustrates 
the model’s limitations, where factors such as extreme poses 
and occlusions result in significant errors in key point 
estimation. These cases collectively highlight MoveNet's 
strengths and its areas for improvement. 
 

 

FIGURE 2. Pose Estimated Representation 

3.3.       Violence Detection 

            For the violence detection component, we selected the 
ConvLSTM architecture due to its superior ability to handle 
spatiotemporal data. ConvLSTM builds upon the foundation 
of Fully Connected LSTMs (FC-LSTM) by incorporating 
convolutional structures into both the input-to-state and state-
to-state transitions [19]. As demonstrated in [17], stacking 
multiple ConvLSTM layers to form an encoding-forecasting 
framework enables the network to effectively manage general 
spatiotemporal sequence forecasting tasks. In contrast, FC-
LSTMs operate on one-dimensional vectors, which limits their 
capacity to maintain spatial relationships inherent in image and 
video data, rendering traditional LSTMs unsuitable for such 
applications [20]. ConvLSTM offers a more efficient 
alternative by requiring fewer parameters while still preserving 
spatial hierarchies, making it particularly well-suited for 
processing images and videos. This balance of reduced 
complexity and maintained spatial integrity makes 
ConvLSTM an ideal choice for our violence detection model, 
allowing it to accurately capture and interpret the dynamic 
interactions present in visual data. 

 For the convolutional backbone of our ConvLSTM 
architecture, we selected the “ResNet50V2” model [21], a 50-
layer variant of the widely used ResNetV2 architecture. 
Residual Networks, first introduced in [22], gained popularity 
for their ability to mitigate vanishing and exploding gradient 
issues when increasing network depth, thereby improving 
accuracy. Previously, increasing the layer count in deep 
networks often led to accuracy degradation due to the 
difficulty of back propagating gradients through multiple 
layers. Residual Blocks address this issue by introducing skip 
connections, allowing gradients to bypass certain layers and 
effectively preserving gradient flow [22]. In ResNetV2 [21], 
the architecture was refined by introducing batch 



 

 

normalization before each weight layer, a modification that 
improved performance. Various ResNetV2 architectures are 
available, including ResNet50V2, ResNet101V2, and 
ResNet152V2. Among these, we selected ResNet50V2 for its 
balanced trade-off between complexity and performance. We 
utilized a pre-trained ResNet50V2 model, originally trained on 
the ImageNet dataset [23], as the convolutional feature 
extractor within the ConvLSTM framework. This integration 
enabled us to leverage ResNet50V2's robust feature extraction 
capabilities for spatiotemporal analysis in violence detection. 

  After initializing the sequential model, we started by 
adding the ResNet50V2 layer as the primary convolutional 
backbone. Next, we incorporate a TimeDistributed Flatten 
layer to handle sequential data across time steps, followed by 
a Bidirectional LSTM layer with 128 units to capture temporal 
dependencies in both forward and backward directions. To 
prevent overfitting, we included two Dropout layers with a 
dropout rate of 0.5. Between these, we add a Dense layer with 
128 units and “ReLU” activation to enhance non-linear 
transformations. Finally, we complete the model with a single-
unit Dense layer with “Sigmoid” activation, providing a binary 

output for classification. 

3.4. Model Setting 

       Given that the model performs binary classification 
(Violent vs. Non-Violent), we compile it using the Binary 
Cross-Entropy loss function. This loss function quantifies the 
difference between the model’s predicted probability 

distribution and the true distribution for each class. The Binary 
Cross-Entropy loss L for a single instance is expressed in 
equation 1. 
 

   𝐿 = −
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖 = 1

× log(𝑝(𝑦𝑖)) + (𝑖 − 𝑦𝑖) × log(1 − 𝑝(𝑦𝑖))      (1) 

 
     In this context, yi represents the actual class label, where 
p(yi) is the predicted probability of the instance belonging to 
class 1 (Violent), and 1- p(yi) represents the probability of it 
belonging to class 0 (Non-Violent). 
     We used ReduceLearningRateOnPlateau with default 
settings to adjust the learning rate during training. To minimize 
Binary Cross-Entropy loss, we applied the Adam optimizer 
with an initial learning rate of 0.000001. The model was 
trained for 100 epochs with a batch size of 16 to ensure 
effective learning and stable performance. 

3.5.      Evaluation 

            To evaluate the model's performance, we compute key 
metrics including Accuracy, Precision, Recall, Specificity, and 

F1 Score. Each of these values is calculated using True 
Positives (TP), False Positives (FP), True Negatives (TN), and 
False Negatives (FN). In this context, True Positives (TP) 
represent instances of violent activity that are correctly 
classified as violent, while False Positives (FP) denote non-
violent instances that are incorrectly classified as violent. True 
Negatives (TN) correspond to non-violent activities that are 
accurately identified as non-violent, and False Negatives (FN) 
refer to cases of violent activity that are mistakenly classified 
as non-violent. 

 

               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                        (2) 

                            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                  (3) 

                             𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                       (4) 

                          𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                (5) 

            𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
)                    (6) 

         
         We compute Accuracy, Precision, Recall, Specificity, 
and F1 Score using equations 2 - 6 to evaluate the model’s 

performance. Accuracy represents the proportion of correct 
predictions among all predictions, offering a general measure 
of model effectiveness. Precision indicates the accuracy of 
violent activity predictions by measuring the ratio of correctly 
predicted violent instances to all instances predicted as violent. 
Recall measures the model's ability to identify actual violent 
instances by calculating the ratio of correctly predicted violent 
cases to all true violent cases. Specificity provides insight into 
the model’s accuracy in identifying non-violent cases, 
calculated as the ratio of correctly predicted non-violent 
instances to all actual non-violent instances. Finally, F1 Score, 
as the harmonic mean of Precision and Recall, provides a 
balanced measure of the performance, particularly useful in 
cases where class distributions are imbalanced. A high F1 
Score indicates that the model maintains a strong balance 
between correctly identifying positive instances and 
minimizing misclassifications. 

4.    Result & Discussion 

    After training the models for 100 epochs, their performance 
was assessed using a confusion matrix, which quantified true 
positives (TP), false positives (FP), true negatives (TN), and 
false negatives (FN) counts. This evaluation on the test dataset 
offered valuable insights into the model’s discriminative 
ability, highlighting its effectiveness in distinguishing violent 
from non-violent scenarios across various performance 
metrics. 



 

 

  The experimental results in Table I demonstrate that the pose-
estimated model consistently outperforms the base model 
across all metrics, with a 14% increase in precision and 
specificity, reducing false positives and improving non-violent 
case detection. Recall improved by 2%, slightly enhancing the 
detection of violent instances, while the F1 score also 
increased, reflecting a better balance between precision and 
recall. These results validate the effectiveness of pose 
estimation in refining the model’s discriminative ability and 
improving violence detection accuracy. 

TABLE 1. Comparative Performance Evaluation 

Dataset Accuracy Precision Recall Specificity 
F1 

Score 

RWF-2000 
(Base) 68.50% 65.81% 77% 60% 0.709 

RWF-2000 
(Pose 

Estimated) 
77.08% 79.23% 79% 74% 0.770 

   
    The confusion matrix analysis from figure 3 shows 
incremental improvements in classification performance 
through pose estimation. Without pose estimation, the model 
 

 

FIGURE 3. Confusion Matrix (Without Vs With Pose Estimation) 

correctly classified 77 out of 100 violent cases and 60 out of 
100 non-violent cases, revealing notable misclassification 
challenges. Conversely, the pose-estimated model 
demonstrated enhanced performance, accurately identifying 
79 violent cases and 74 non-violent cases, representing a 
meaningful improvement in detecting both violent and non-
violent scenarios. These performance gains come from pose 
estimation's ability to simplify video data to its most essential 
elements. By systematically eliminating background noise, 
variable lighting conditions, and extraneous visual 
information, the technique enables the model to concentrate 

exclusively on human skeletal movements—the most critical 
features for violence detection. MoveNet's sophisticated 
extraction of 17 key body points effectively strips away 
peripheral visual data, leaving only the core kinematic 
information essential for precise action recognition. 
    However, the study has certain limitations.  Pose estimation 
errors (inaccurate or missing keypoints) led to incorrect 
motion representations, adversely affecting classification 
accuracy. Improving the accuracy of pose estimation could 
further enhance the model’s overall detection performance. 

Additionally, pose estimation is particularly effective for 
human-to-human violence detection but may struggle when 
objects are involved, potentially reducing detection accuracy. 
While the observed improvements confirm our hypothesis, 
there is still room for further refinement in the model’s 

performance. Future work will focus on exploring advanced 
architectures such as Vision Transformers (ViTs) or custom 
models to enhance accuracy. Developing specialized pose 
estimation models tailored for violence detection could reduce 
pose estimation errors, further improving detection reliability 
and overall performance. 

5.  Conclusion 

     This study underscores the significant impact of pose 
estimation on violence detection, utilizing the RWF-2000 
dataset and a ConvLSTM architecture. By integrating pose-
estimated skeletal data, the model demonstrated enhanced 
performance across all evaluation metrics, including accuracy, 
precision, recall, specificity, and F1 score. The observed 
improvements can be attributed to the effectiveness of pose 
estimation in enhancing action recognition by filtering out 
irrelevant background noise and emphasizing key human 
movement patterns. Furthermore, the study highlights the 
importance of applying appropriate preprocessing techniques 
in deep learning pipelines, which play a critical role in 
optimizing model performance. While these results validate 
the hypothesis regarding the benefits of pose estimation, there 
remains room for further refinement. Developing specialized 
pose estimation models specifically tailored for violence 
detection in videos could help reduce estimation errors and 
enhance overall detection reliability, paving the way for future 
advancements in computational video analysis methods. 
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