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Abstract:
The integration of artificial intelligence (AI) and computer

vision in agricultural scenarios provides a significant advance-
ment in crop monitoring, autonomous navigation, and disease
detection. The following research proposed a system to improve
agricultural automation incorporated with deep learning-
based object detection models such as RCNN, ResNet50, and
DenseNet121. Using computer vision models, this research aims
to optimize the identification of potential obstacles and crops
in farming environments. Moreover, this research justified the
role of autonomous ground robots for navigation, path planning,
and real-time decision making. The following study evaluates
existing methodologies and presents an improved framework that
combines deep learning architectures with robotic perception
systems to enhance agricultural automation. Furthermore, a Soil
Science Rover Test Module (SSRTM) has been proposed in this
study, which is responsible for in-situ soil analysis focusing on
moisture percentage, pH levels, and nutrient composition. Exper-
imental results justified the effectiveness of the proposed systems
in real-life scenarios. This research contributes to the growing
field of AI-driven precision agriculture, which will eventually
come up with intelligent and fully autonomous farming systems.
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1. Introduction

Automation in the field of agriculture has been moved for-
ward notably with the addition of intelligent autonomous sys-

tems, which primarily authorize intensified productivity and
precision in farming [9]. The introduction of unmanned ground
vehicles (UGV) to the agricultural industry has become a cru-
cial proportion among modern-day innovations, which has al-
ready proven the ability to perform some pivotal agricultural
operations such as soil analysis, autonomous navigation, and
field monitoring [11]. Soil Science Rover (SSR) has been pre-
sented in this paper with the characteristics of rough agricul-
tural terrain traversing along with real-time soil analysis.

The SSR consists of a rocker bogie suspension system,
which ensures steady movement across rough and unbalanced
cultivation land. The proposed system is facilitated with an effi-
cient GPS module for proper navigation. Computer vision used
in this system provides features like obstacle detection and en-
vironmental awareness, moreover, SSR is equipped with Faster
R-CNN ResNet50 for the proper detection of obstacles such as
rocks, trees, and fences to provide secure movement [11]. Fur-
thermore, DenseNet121 with transfer learning has been incor-
porated into the system to classify the obstacles, which even-
tually allows SSR to avoid any potential obstacle by rerouting
[14]. These deep-learning models enable real-time image pro-
cessing to ensure efficient and adaptive navigation.

Further on than navigation, SSR is also designed for in-situ
soil analysis with the help of its Soil Science Rover Test Mod-
ule (SSRTM). Essential properties of soil, such as moisture per-
centage, pH levels, and nutrient composition, can be examined
by the onboard sensors. The integration of computer vision
along with GPS navigation and autonomous decision-making
allows SSR to gather accurate data and provide optimized farm-
ing strategies. This paper provides a complete rundown of



SSR’s architecture, navigation system, computer vision capa-
bilities, and soil analysis functionality. The following sections
cover the literature review, system design, testing, and experi-
mental analysis.

2. Literature Review

The addition of autonomous systems in agriculture has ob-
tained significant recognition with the aim to provide optimized
efficiency, accuracy, and sustainable solutions. This section re-
views recent expansions in autonomous agricultural rovers, pri-
marily focusing on their navigation systems, computer vision
applications, and soil analysis capabilities.

Navigating a rover autonomously is a crucial system for agri-
cultural robots. It ensures flawless movement of the rover
around uneven farmlands. So many GPS-based navigation sys-
tems are already being implemented, such as the R2A2 robotic
rover, which consists of a GPS-based autonomous navigation
system to perform different levels of tasks in agricultural envi-
ronments [6]. However, relying only on GPS for navigation
may limit the movement of the rover by signal obstructions
caused by dense crop fields. To deal with challenges like this, a
new approach has been explored, focused on vision-based navi-
gation solutions. Research by Wang et al. (2022) calls attention
to how vision sensors process real time environmental data, de-
tecting crops, trees and obstacles to support autonomous local-
ization and path planning [7,13]. Likewise, Agronav, a vision-
based navigation framework, incorporated semantic segmenta-
tion and line detection to optimize path planning in an agricul-
tural environment [1]. Research by Fasiolo, D. T. et al. (2023)
proposes an integrated LiDAR and camera-based navigation
system that allows real-time path correction in rough terrain
with optimized obstacle avoidance [3].

For practicing precision in agriculture, computer vision is
widely recognized, which emphasizes crop monitoring, pest
detection, and autonomous navigation [12]. The research in
Zhang et al. (2021) proposed an AgriRover that integrates an
agricultural object recognition module, which mainly detects
obstacles such as trees and fences for improving navigation ac-
curacy [8]. Moreover, detecting the crop rows and obstacles,
machine vision has provided significant improvement, which
makes it an indispensable tool in agricultural robotics [4].

Deep learning models upgraded the agriculture-focused
computer vision applications with different frameworks [15-
16]. Faster R-CNN with ResNet50 is broadly incorporated
for real-time object detection in agricultural fields, whereas
DenseNet121 has been propitiously optimized for the classi-
fication of disease in crops [10]. Fasiolo, D. T. et al. (2023)

present the combination of YOLOv5 and Transformer networks
to create a hybrid model to achieve 89.4% accuracy in obsta-
cle detection, which outperforms traditional CNN-based mod-
els [3].

To optimize the nutrient assessment and soil health moni-
toring, soil analysis performs a crucial role in agricultural en-
vironments. The research in Martinez et al. (2021) proposed
Agrobot Lala for real-time nitrate analysis, which eventually
enabled site-specific fertilization [5]. Moreover, a study on
autonomous soil contamination detection proposes combining
AI models with multi-spectral imaging to double the accuracy
[2]. Fasiolo, D. T. et al. (2023) propose a multi-sensor fusion
approach using hyperspectral imaging, pH sensors, and deep
learning models to differentiate soil conditions properly [3].
This method hits 94% classification accuracy, which clearly
demonstrates the effectiveness of AI-driven soil analysis tech-
niques.

3 Rover Architecture

Soil Science Rover (SSR) is an unmanned ground vehi-
cle (UGV) designed with diverse kinematic solutions to better
adapt to rough agricultural terrains. It is a four-wheel drive ve-
hicle with a rocker boggie suspension system. Onboard sensors
are installed in the rover for automated soil analysis purposes.
An advanced GPS mechanism is used for navigation. The rover
is equipped with Neo-M8N GPS along with a compass. For
camera vision, a Logitech C920 PRO HD webcam (1080 × 720
resolution) is attached to the rover.

FIGURE 1. Architecture of Soil Science Rover



FIGURE 2. Obstacle detection mechanism

4. Driving and Navigation System

A properly functioning Soil Science Rover has a strong and
suitable autonomous system for long-range traversal and on-
board soil tests. Using GPS navigation and computer vision
system, the rover can traverse automatically.

4.1 Autonomous Planning and Integrated Approach

Soil Science Rover evaluates a few key techniques for plan-
ning and execution. A set of coordinates have been provided for
the rover to navigate the area and test the soil of the farmland.
A GPS sensor determines its location, and the path is planned
using the A* search algorithm. The rover moves autonomously
to get to the target places.

4.2 Computer Vision

For obstacle detection and identification, the rover uses com-
puter vision technique. To ensure efficient performance, the
computer vision system is divided into two main sections. The
first section is detecting obstacles, and the second section is to
identify the obstacle to take the appropriate action.

Our rover has adopted the computer vision technique to de-
tect any obstacle, and it has used Faster RCNN ResNet50 (Fig-
ure 2). Using this process, the rover detects any obstacle (e.g.,
larger rocks, trees, humans, fences, etc.), and it moves to the
target points to perform an onboard soil test. For performing
the second section of our driving and navigation system, which

FIGURE 3. Segmenting the obstacles

FIGURE 4. Applying intensity threshold

is obstacle identification, the rover identifies the obstacle using
Transfer Learning with pre-trained DenseNet121.

Faster RCNN ResNet50 helps to detect obstacles using less
complexity and minimal computational power with mechani-
cal noise. As Faster RCNN has been detecting in real time, it
has captured frames from the live feed and generated an initial
subsegment. After that, the rover runs a greedy algorithm to re-
cursively integrate similar regions into a large one. Finally, the
generated regions have to be used for producing final dedicated
regions in the figure where it detects the obstacle.

Figure 3 shows the segmentation output. In this figure, the
image is the output image, where the color represents different
types of obstacles. The rover moves autonomously in order to
get near to the identified obstacle using the A* search algorithm
as it is used to navigate.

Without any mechanical damage, the rover can reach its des-
tination. Also, it creates a subset of the target location for test-
ing the soil. After detecting the obstacle, it avoids the obstacle
and reroutes the rover. In this way, the rover can change its



current position. For this purpose, it has to fix the root node
at first and plan different paths using the A* search algorithm.
If it finds an obstacle, the rover would calculate the distance
between the obstacle and the rover using the Euclidean Dis-
tance formula as well as utilizing the threshold parameter. Fig-
ure 4 shows the autonomous system of the rover with different
intensity thresholds. The rover uses 64 intensity threshold as
an upper threshold to visit. It is an autonomous system of the
rover with different intensity thresholds. In addition, accord-
ing to rock detection distance, our autonomous system of the
rover is suitable to detect obstacle distance and perform the au-
tonomous task.

By doing this, the first part of the autonomous system has
been completed. Whenever it becomes possible to reach the tar-
geted soil position, the rover performs an onboard soil test and
analyzes the soil. The second part is identifying the obstacle
to avoid it. To complete this part, the rover uses DenseNet121
with a few images of the obstacle. Using a transfer learning
trained model, it tries to identify the obstacle. Transfer learn-
ing is a process that uses stored knowledge from a pre-trained
model and applies it to other data to get the required specific
result. For this task, we engineered the last layer of the model.

4.2.1 Dataset

We are using the CIFAR-100 dataset, which was created
by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The
CIFAR-100 dataset consists of 100 classes, each containing 600
images. There are 500 training images and 100 testing images
per class. The 100 classes are categorized into 20 superclasses.
Each image is assigned a “fine” label, representing its specific
class, and a “coarse” label, indicating its corresponding super-
class.

5. The In-Situ Atmosphere and Subsurface Analyzer

Soil Science Rover Test Module (SSRTM) is an in-situ au-
tomated soil analysis tool developed by the Soil Science Rover
research team. Before building our onboard subsurface ana-
lyzer tool, we studied different agricultural rovers [5].

5.1 Soil Characteristics Exploration Mission

At the beginning of each soil test operation, the rover reaches
the GPS-locked targeted location. Using multiple cameras, it
captures the surface image and sends it to the base station for
survey and selects an ideal place to dig and acquire soil sam-
ples for in-situ analysis. After reaching there, using an exca-
vator claw, it begins digging soil and extracting soil from the

subsurface. Moreover, the rover inserts its probe in the created
trench to obtain initial data of soil properties such as biomass,
soil moisture, pH, and NPK. After that, the rover extracts soil
from the trench and distributes it in the respective test cham-
bers for onboard deep analysis, which is an automatic process.
Finally, all the data and observations are sent to the base station
for results evaluation.

5.2 Experiment Unit

Our soil test unit consists of three units called SSRTM (Soil
Science Rover Test Module), where a real-time sample analysis
unit detects biomass, soil moisture, pH, and NPK, and gives
a subsurface view of the soil. Our fully automated onboard
science unit is activated after the location verification process
that is done by the rover intelligence.

5.3 Collection and Sample Distribution

This is the very first step of the experiment process, where
the rover collects the soil using a robotic arm. After collecting
soil samples, the excessive soil is removed and two separate
soil distributors control the distribution of the required amount
of soil to each of the units. This distributor is only required for
NPK and biomass test.

5.3.1 Real Time Sample Analysis

This part of the SSRTM is fully water resistant and well
built to handle any harsh environment so that all the sensors
remain intact and provide continuous data without endanger-
ment. It consists of two per-calibrated sensing probes: pH and
soil moisture sensors enclosed by metallic tubes to protect their
sensitive parts. This unit is located at the top of the science arm.

6. Result Analysis

6.1 Driving and Navigation System

The primary focus was on object detection and object iden-
tification as the main system is based on GPS navigation and
computer vision techniques. As a part of model testing figure
5 shows that trees, fence, cows, and rocks have been detected
and identified successfully using Faster RCNN Resnet50 and
DenseNet121 model.

During the outdoor experiment of the autonomous rover, we
provided 4 different geo-locations in the 3 acres farmland. Our
rover successfully identified seven different objects, completed



TABLE 1. Location wise soil characteristics

Location pH Nitrogen (N) Phosphorus (P) Potassium (K) Organic matter Soil moisture
Rajshahi 6.35–8.28 0.11% 3.2 ppm 0.03% 1.88% 20–25%
Sylhet 4.0–5.5 0.12% 2.1 ppm 0.05% 0.95% 30–35%

Jamalpur 6.35–7.46 0.13% 3.2 ppm 0.03% 1.95% 22–28%
Khulna 5.8–7.2 0.10% 2.8 ppm 0.04% 1.65% 25–30%

Chittagong 4.5–6.0 0.11% 2.0 ppm 0.03% 2.10% 35–40%

FIGURE 5. Identifying different types of obstacles

an onboard soil test, and sent the soil test data to the rover. It
took approximately 30 minutes to complete this operation.

6.2 The In-Situ Atmosphere and Subsurface Analyzer

One of the prime concerns for an autonomous agriculture
rover is an onboard soil experiment unit named Soil Science
Rover Test Module (SSRTM), which adds the capability of soil
sample analysis. Using the robotic manipulator, the rover can
collect soil samples from a depth of 10cm through the cus-
tomized end effector.

For measuring the performance of the onboard analysis sys-
tem, soil samples have been tested using it from a couple of
locations. Using the data from the analysis of soil from five dif-
ferent locations in Bangladesh. A table (Table 1) is presented
to compare the findings.

Figure 6 represents the average variation between the on-
board soil test module data and lab test data of the five different
locations. We used the percentage difference formula. Accord-
ing to the formula, it quantifies how much the onboard soil test
module’s readings deviate from the lab test values, expressed
as a percentage. The formula is given below.

V (%) = |O − L

L
| × 100 (1)

FIGURE 6. Average variation of different locations

Here,
V = Variation
O = Onboard soil test data
L = Lab test data

For example, let’s calculate the variation in nitrogen lev-
els in Rajshahi.
Onboard soil test data: 0.11%
Lab test data: 0.10%
Using the variation formula, the variation for Nitrogen in
Rajshahi is 10%.

In the figure 6, the variation of Rajshahi, Khulna, Sylhet,
Jamalpur, and Chittagong is 4%, 3.90%, 3.80%, 3.70%, and
3.70% respectively. The average variation is less than 4% in
those five locations. So, it justifies that the onboard soil test
error rate is very low.

7. Conclusions

Our research examined the current supportive technologies
for ground mobile robots used for autonomous soil analysis
in agriculture. Detection and identification of objects through
faster RCNN Resnet50 and DenseNet121 model upgraded the
autonomy of the designed rover for driverless operations. Dif-
ferent soil cache samples from multiple locations have been
collected through the rover for onboard analysis. The custom-



designed Soil Science Rover Test Module (SSRTM) helped us
to visually realize different aspects of soil and generate compar-
isons between a couple of soil samples from different locations.
A YOLOv5 can be introduced for more efficient object detec-
tion, which will ultimately upgrade the driverless operation of
the rover. The uses of wet materials for onboard testing can be
replaced with dry materials as wet materials are toxic, which
may harm the rover electronics. The work is still going on with
every module to produce the best version of each subsystem
eventually. Also, this work revealed that mobile robotics in
agriculture is a present and active field of research driven by
the need to optimize agricultural production, reduce waste, and
improve sustainability, as dictated by climatic and social fac-
tors.
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