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Abstract: 

Lumbar Spine Degeneration Classification (LSDC) poses 
significant diagnostic challenges as radiologists manually assess 
each MRI scan which is time-consuming, subjective, and prone to 
inter-observer variability. This highlights the need for an 
automated, objective, and efficient diagnostic solution to assist 
radiologists. Current deep learning-based approaches rely on 
single-slice MRI scans, which lack contextual spatial information. 
To address these challenges, we propose a Detection-Guided 
Classification Framework that integrates automated region 
detection with deep learning-based severity classification. Our 
approach introduces a novel RGB-based pre-processing 
technique that encodes multi-slice Sagittal T2-weighted MRI 
information into a single image. We first detect the degenerative 
regions to ensure that the classification models focus on the 
relevant areas. We then train multiple Convolutional Neural 
Network models to classify degeneration severity. Using the 
RSNA dataset, the YOLOv8 detection model achieves a mAP50 
score of 0.9905. In the classification models, ResNet152 scores the 
highest accuracy of 92.74%, and EfficientNetB5 achieves the 
highest accuracy of 88.18% in the holdout test. Our result 
suggests that using the multi-slice encoded MRI dataset, the 
proposed detection-guided classification framework effectively 
localizes degenerative regions and achieves high classification 
accuracy by focusing on relevant areas rather than processing 
entire MRI slices.  
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1. Introduction 

Lumber Spine Degeneration (LSD) refers to the 
progressive degeneration of the intervertebral discs which 
often leads to chronic lower back pain, vastly affecting day-to-

day life. It is one of the leading causes of disability worldwide, 
affecting over 500 million individuals and significantly 
contributing to global healthcare expenses. Epidemiological 
studies show that almost 80% of adults over the age of 50 
exhibit some form of lumbar disc degeneration, with 
symptoms ranging from mild discomfort to severe 
neurological issues. The socioeconomic burden of LSD is 
undeniable, as the United States alone spends more than $100 
billion annually [1]. With the worldwide increase of spinal 
degenerative disorders in aging populations, improving the 
accuracy and efficiency of detecting and classifying LSD 
diagnosis is of critical importance. 

In the spine, there are five intervertebral disc levels 
L1/L2, L2/L3, L3/L4, L4/L5, and L5/S1 where degeneration 
occurs. In the present day, diagnosing LSD relies on 
radiologists manually assessing changes in disc morphology, 
signal intensity, and structural integrity through Magnetic 
Resonance Imaging (MRI) one by one using the Pfirrmann 
grading system. However, this approach is highly subjective, 
with inter-observer agreement ranging from 40% to 70%, 
leading to inconsistencies in clinical decision-making [2].  
Moreover, manual assessments are time-consuming and 
inefficient for large-scale studies, creating a demand for semi 
or fully automated diagnostic tools that can enhance speed 
while being as accurate as possible. Also, most degenerations 
are classified by focusing on signal intensity and structural 
morphology of Sagittal T2-weighted MR images, as the 
proteoglycan concentration and water are reflected by a 
decreased signal intensity [3], [4], [5]. However, the view in 
the sagittal plane in 2D MR images is much more limited than 
the axial plane, as such it may also limit the detection of early 
degeneration [6]. Therefore, it is problematic and time-
consuming for radiologists to assess early degeneration from 
2D MRI slices due to the limitations of MRI.  

Recent advancements in deep learning have significantly 



 

 

improved medical imaging by enabling automated detection, 
segmentation, and classification of pathologies with near-
human accuracy. Convolutional Neural Networks (CNNs), 
Vision Transformers (ViTs), Transformer-based models, and 
hybrid architectures have demonstrated state-of-the-art 
performance across various imaging modalities, including 
radiology, pathology, and ophthalmology [7].   

In musculoskeletal imaging, CNN-based models have 
been successfully applied to detect vertebral fractures, spinal 
stenosis, and intervertebral disc abnormalities, showcasing 
their potential to streamline LSDC diagnosis [8]. The study [9] 
proposed a fully automatic deep learning system for lumbar 
disc degeneration classification using SpineNet, a VGG11-
based architecture with an attention mechanism.  The model 
achieved an accuracy of 91.3% in classifying lumbar disk 
severity. Similarly, another study [10] developed a VGG16-
based CNN to classify herniated lumbar discs using axial-view 
MRI. While the model had 94% classification accuracy, it was 
trained on a private dataset with limited availability, which 
restricted external validation. Other studies [10], [11] utilized 
popular CNN-based architecture, mostly trained on 2D MRI 
slices using transfer learning models such as VGG16, ResNet, 
and DenseNet, etc, for direct degeneration classification using 
only the degeneration-affected slices, reducing classification 
accuracy on real-world MRI data and overall generalizability. 

In our study, we first focused on a detection-guided 
classification framework to counter misclassification due to 
the limitations of Sagittal T2-weighted slices in MR images. 
Detection-guided framework (DGF) in medical imaging 
integrates automated object detection with classification or 
segmentation models to improve diagnostic accuracy and 
efficiency. A DGF first identifies the regions of interest (ROI) 
from the medical images using object detection models such 
as You Only Look Once (YOLO), Faster R-CNN, Mask R-
CNN, etc. Once an abnormality is detected, the image is 
cropped to retain only the relevant information, as well as 
discarding the unnecessary information for much better 
training data [11]. Finally, a classification model determines 
the type or severity of the abnormality. DGFs are widely used 
in various medical studies and applications as they focus only 
on relevant information, which reduces false positives and 
increases the efficiency and speed of a model, as there is no 
need to process an image entirely. 

Traditional medical imaging studies often rely on single-
slice MRI scans, which can lead to the loss of important 
contextual and spatial information that can be gathered from 
surrounding slices, not to mention that normal sagittal T2-
weighted images have limitations in detecting early-stage 
degeneration [12]. Our study focuses on a detection-guided 
classification framework that adopts an advanced RGB pre-
processing system to counter the discussed limitations in MR 
images. The study aims to implement this novel multi-slice 

RGB encoding approach and detection-guided classification to 
improve the accuracy and robustness of LSD assessment in 
MRI scans. 

2. Dataset 

This study uses the multi-institutional RSNA 
(Radiological Society of North America) 2024 Lumbar Spine 
MRI Dataset [13], which includes 147,320 DICOM images 
(.dcm) with 48,657 MRI files annotated with severity levels 
and single point coordinates across three degenerative 
conditions: Spinal Canal Stenosis (SCS), Neural Foraminal 
Narrowing (NFN) (Left & Right), Subarticular Stenosis (SAS) 
(Left & Right) at five intervertebral disc levels and each 
degenerative condition is classified into three severity levels: 
Normal/Mild, Moderate and Severe.  

 

FIGURE 1. Dataset Overview. 

19694 files are from the Sagittal T1 plane, 9748 files are 
Sagittal T2 and 19215 files are Axial T2. As our study solely 
focuses on Sagittal T2-weighted MR images, we separated the 
1974 subjects that contain the relevant 9748 slices (Fig. 1). 1 
subject with no proper severity levels in the Sagittal T2 plane 
was found and removed. Sagittal T2-weighted MRI provides 
superior soft-tissue contrast and detailed visualization of spinal 
discs, which is ideal for assessing SCS and detecting 
degenerative changes in the lumbar spine [14], [15], [16], [17], 
[18]. These 9748 slices will then be used for RGB multi-slice 
encoding to prepare them for our framework. 

3. Method 

3.1. Pre-processing 

The first step in our study, after sorting the dataset, is the 
implementation of a merging technique to enhance the 
representation of LSD in MR images. This encoding process 



 

 

(Fig. 2) ensures that the model is trained with multi-slice 
spatial information. 

 

FIGURE 2. Pre-process technique for RGB image. 
 

Firstly, we extract all the 9748 sagittal T2-weighted MRI 
slices from each subject. Then we identified the slice that 
contained the highest number of degenerative regions and 
labeled it as the main slice. We then selected the two previous 
and next adjacent slices, forming a five-slice cluster around the 
main slice. 

Secondly, we took the following approaches to create 
colored channels to encode multi-slice information into a 
single RGB image. The Green Channel contains the main slice, 
which also holds the most degenerative information. 
Additionally, the Red Channel is the fusion of the main slice, 
previous, and next adjacent slices, which preserves local 
degeneration patterns. Lastly, the Blue Channel contains the 
fusion image of the entire cluster, which has the most amount 
of spatial LSD data. 

Finally, the three channels are merged to create a single 
RGB image that contains degenerative variations across the 
intervertebral disc levels. From the total number of 9748 slices, 
a total of 1978 Sagittal T2-weighted RGB pre-processed 
images were created. 

3.2. Validation strategy 

We have employed a two-stage validation strategy, a 
holdout test set for final evaluation, and a 4-fold cross-
validation during the model development. 

The holdout test contains 20% of the entire Sagittal T2 
dataset, which contains a total of 395 RGB pre-processed 
images, and remains untouched until the final validation is 
required. This serves as an independent evaluation dataset, 
which ensures an unbiased assessment of the entire framework.  

The remaining 80% of the dataset is used in 4-fold cross-
validation [19] to ensure robust evaluation and minimize 

potential biases. This technique utilizes 1583 RGB pre-
processed images, which are divided into four equal folds, and 
each fold holds an average of 395 images. In each iteration, 
three folds (75% of the data) were used for training, while the 
remaining fold (25% of the data) served as test data. This 
process was repeated four times, with each fold serving as test 
data once. This approach prevents dataset bias and provides a 
more robust estimate of model performance. Additionally, this 
method ensures fairness in both the training and testing phases 
throughout the validation process, as each data sample 
contributes equally to both phases. 

3.3. Detection 

We employed YOLOv8 [20] due to its high detection 
speed, superior localization accuracy, and ability to handle 
complex medical images. The model detects SCS degeneration 
in intervertebral disc levels using sagittal T2 MR images. The 
detection model is trained using bounding boxes that were 
manually derived from single-point severity coordinates 
provided in the dataset. We systematically tested multiple 
bounding box sizes and selected an optimal configuration 
based on experimental performance. With the most relevant 
parameters for our study (Optimizer: AdamW, Learning Rate: 
1e-4 with cosine annealing, Batch Size: 16, Epochs: 100, IoU 
Threshold: 0.5), we train the model to detect the region. The 
following evaluation metrics are used: mAP50 and mAP50-95. 
mAP50 evaluates the detection performance at an Intersection 
over Union (IoU) threshold of 0.5, while mAP50-95 calculates 
the mean average precision across IoU thresholds from 0.5 to 
0.95, with a step size of 0.05. These metrics provide a 
comprehensive assessment of detection performance as shown 
in the following equations (1), (2). 

      𝑚𝐴𝑃@50 =
1

𝑁
∑ 𝐴𝑃(𝐼𝑜𝑈 ≥ 0.5)𝑁

𝑖=1       (1) 

  𝑚𝐴𝑃@50 − 95 =
1

𝑁
∑

1

10
∑ 𝐴𝑃(𝐼𝑜𝑈 ≥ 𝑡)𝑡=0.5,0.55,0.6…0.95

𝑁
𝑖=1   (2) 

 
After degenerative regions are detected, they are cropped 

and extracted, which ensures that unnecessary background 
information other than the required regions is not used to train 
the classification model, aiding the classification model in 
focusing only on the degenerated areas. 

3.4. Classification 

CNN classification models DenseNet121 [21], 
EfficientNetB5 [22], MobileNetV2 [23], and ResNet152 [24] 
were used for their range of model sizes, as well as on 
numerous tasks and benchmarks. After detecting the region of 



 

 

SCS degeneration, the cropped regions are categorized based 
on the severity, which is Normal/Mild, Moderate, and Severe. 
Also, a random shuffle was performed among subjects to 
prevent overlapping of the same subjects across folds and 
ensure the result's validity by reducing potential bias. These 
classification models are trained using the RSNA dataset with 
relevant parameters for our study (Optimizer: Adam, Learning 
Rate: 1e-4, Batch Size: 8, Epochs: 50) with a classifier 
GlobalAveragePooling 2D, Dense layers 1024 and 512 with 
ReLU activation, Dense layer 3 with Softmax activation. For 
classification, the following evaluation metrics are used, 
Accuracy, Precision, Recall, AUC (Area Under the Curve) 
micro average, and F1 score, as shown in the following 
equations (3), (4), (5), (6) and Grad-CAM (Gradient- weighted 
Class Activation Mapping) [25]. 

                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                    (3) 

                                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                          (4) 

                                      𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                              (5) 

               𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
)                 (6) 

 
To represent the areas of interpretability and better 

emphasize clinically significant regions in the pictures, Grad-
CAM was applied to each model. The method makes it easier 
to fully understand the model's explainability and how the 
model assigns various severity ratings to each subject. 

4. Results & Discussion 

4.1. Detection Results 

YOLOv8 model detection result is generated with ground truth 
labels provided by the RSNA dataset. 

TABLE 1. Detection Results on Ground Truth 
 

mAP50 mAP50-95 Box precision Box recall Box f1 
0.9905 0.84375 0.97925 0.99075 0.98496 

The detection model achieved an mAP50 of 0.9905 and a box 
recall of 0.99075 in the final epoch, demonstrating high 
detection accuracy. 

4.2. Classification Results 

The classification results demonstrate a noticeable 
performance, as highlighted in Table 2. 

TABLE 2. Classification Results on Ground Truth 
 

Models Accuracy Precision Recall F1 score 
DenseNet121 0.9111 0.9106 0.9106 0.9106 

EfficientNetB5 0.9167 0.9118 0.9118 0.9118 
ResNet152 0.9274 0.9164 0.9164 0.9164 

MobileNetV2 0.9156 0.9095 0.9095 0.9095 

From the classification models, the ResNet152 has the best 
result with the highest Precision and Recall value of 0.9164. In 
the case of Micro Average ROC, MobileNetV2 achieved a 
score of 0.9450, outperforming other models across all 
severity levels (Normal/Mild, Moderate, and Severe) (Fig. 3). 

 
FIGURE 3. Micro Average ROC Curve. 

4.3. Full Framework Results 

The holdout results of the proposed framework 
demonstrated robust performance in classifying SCS across 
the three severity classes. 395 subjects were selected from the 
dataset for the holdout test, ensuring an unbiased evaluation 
result for the model’s generalizability. In Table 3 and Table 4, 

TABLE 3. Detection Results on Holdout Test 
 

mAP50 mAP50-95 Box precision Box recall Box f1 
0.9932 0.851 0.9830 0.9910 0.9869 

TABLE 4. Classification Results on Holdout Test 
 

Models Accuracy Precision Recall F1 score 
DenseNet121 0.8644 0.8724 0.8724 0.8724 

EfficientNetB5 0.8818 0.8780 0.8780 0.8780 
ResNet152 0.8772 0.8720 0.8720 0.8720 

MobileNetV2 0.8808 0.8762 0.8762 0.8762 



 

 

Detection and Classification Results on the Holdout Test are 
shown for each model. 

For this Holdout Test, the EfficientNetB5 model 
performs better than any other model (Table 4), showcasing 
the model's ability to accurately classify SCS severity. These 
results indicate that the model maintains high diagnostic 
accuracy even when applied to unseen data. 

In Figure 4, we showcase every class for each model 
performance. The ROI correctly detected from the images for 
the EfficientNetB5 was better than any other heatmap. The 
visualizations demonstrate a balanced focus across the SCS, 
with the best regional heatmap. For the DenseNet121 and 
MobileNetV2, the regional interest was correct, but the region 
was across the maximum portion of the image.  

 

 

FIGURE 4. Grad-CAM Results. 
 
Our proposed framework has several key design choices. 

Firstly, the RGB preprocessing technique enabled the model 
to leverage the multi-slice spatial information, which provides 
a more comprehensive view of degenerative patterns across 
SCS disc degeneration. This can address the limitations of 
single-slice MRI scans by utilizing sufficient contextual 
information on disc degeneration for accurate diagnosis. 

Secondly, the detection-guided classification framework 
ensures the model is focused on relevant ROI, reducing the 
impact of Sagittal T2 MRI limitations and unnecessary 
background information. Our use of YOLOv8 was highly 
effective with a mean average precision (mAP50) of 0.99322, 
showing it accurately identifies degenerative regions. 

Finally, a 4-fold cross-validation strategy during model 
development ensures a robust and generalizable framework. 
On the other hand, the independent holdout test set simulates 
real-world deployment scenarios to further validate its clinical 
applicability for use. 

Our proposed framework has significant potential for 
improving the diagnosis and classification of lumbar spine 
degenerative conditions. This framework can reduce the 
workload of radiologists by reducing the time to diagnosis. 
Furthermore, because the dataset is contributed from different 
global regions of the world, it contains a wide range of subject 
variability. 

Despite the results of the framework, it has certain 
limitations. First, the study is solely focused on T2-weighted 
MR images, which can be extended in the future to Axial T2-
weighted and Sagittal T1-weighted MR images to detect and 
classify Neural Foraminal Narrowing (Left and Right), and 
Axial Subarticular Stenosis (Left and Right). Also, Further 
validation of external datasets is necessary to confirm the 
framework's robustness. 

5.     Conclusion 

This study presents a detection-guided classification 
framework for LSD by integrating an RGB pre-processing 
technique. By taking advantage of multi-slice spatial encoding 
(RGB pre-processing), the study overcomes the limitations of 
single-slice MRI analysis and enables the model to learn 
complex degenerative patterns. Our results demonstrate the 
effectiveness of this approach, with YOLOv8 achieving a 
mAP50 score of 0.9905, while ResNet152 achieves the highest 
accuracy of 92.74% among the other classification models in 
4-fold-cross-validation and EfficientNetB5 achieves the 
highest accuracy of 88.18% in the holdout test, which proves 
the study's ability to generalize to unseen data. The RGB multi-
slice encoding technique was a key factor in improving model 
performance. Thus, the proposed framework offers a reliable, 
AI-assisted diagnostic tool to detect and classify LSD from 
Sagittal T2-weighted MRI scans, which can reduce 
radiologists’ workload while improving accuracy. 
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