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Abstract: 
Recent advancements in hardware technologies have signif-

icantly accelerated the development of artificial intelligence, 

deep learning, and neuromorphic computing. However, the 

unique characteristics of spike-based data constrain the perfor-

mance and practicality of spiking neural networks (SNNs), often 

rendering them less competitive than convolutional neural net-

works (CNNs). While some approaches improve SNN perfor-

mance by leveraging non-spiking data for training, they deviate 

from the core principles of neuromorphic computing. In this 

study, we propose a biologically inspired spike encoding frame-

work based on neuron-like signal generation. Specifically, we in-

troduce an artificial layer of rods and cones to simulate the func-

tionalities of retinal photoreceptors, enabling the encoding of 

both color and luminance information into spike signals. This 

design offers a more comprehensive visual representation for 

SNNs. Moreover, we revisit the image acquisition pipeline and 

propose the concept of photon-based data, emphasizing the crit-

ical role of temporal resolution in static image encoding and 

spike signal formation. Experimental results validate that our 

neuron-based spike encoding and artificial photoreceptor layer 

significantly enhance spike information density, leading to im-

proved SNN performance. Our findings aim to address key lim-

itations in neuromorphic vision systems and contribute to ex-

panding the applicability of SNNs across real-world domains. 
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1. Introduction 

With the rapid advancement of technology, particularly 

the enhancement of GPU performance, the application of 

General Purpose computing on Graphics Processing Units 

(GPGPU) has been significantly propelled. As GPGPU tech-

nology has evolved, research in artificial intelligence (AI) has 

shifted from machine learning (ML) toward deep learning 

(DL), leveraging large-scale data to train artificial neural net-

works (ANN) for tasks such as automated classification and 

detection. 

The progress in DL has led to numerous powerful appli-

cations; however, it also entails high energy consumption. To 

address this issue, scientists have introduced neuromorphic 

computing, which employs spiking neural networks (SNN) to 

reduce power consumption. Nevertheless, event data, which 

only captures dynamic texture variations and lacks color in-

formation, imposes limitations on its applicability. For in-

stance, when a robot utilizes an event camera, it may face 

challenges in decision-making due to its inability to recognize 

colors or acquire texture information when stationary. 

The image acquisition device in a computer vision sys-

tem functions as the "eyes" of a computer, responsible for 

capturing light and converting it into electronic signals. Mod-

ern conventional cameras predominantly utilize CMOS sen-

sors, whose core components consist of MOSFETs composed 

of NMOS and PMOS transistors. This configuration endows 

conventional cameras with low-power consumption charac-

teristics. During the exposure period, light passes through the 

shutter, aperture, and Bayer filter before reaching the photo-

diode, where it is converted from optical energy into electrical 

energy. After simple processing, the data is stored as a static 

image. [1] 

Recently, event cameras, inspired by the human retinal 

mechanism, have emerged as a novel alternative. These cam-

eras use photodiodes, capacitors, and comparators to record 

luminance changes in real time, generating event data consist-

ing of spatial coordinates (x, y), temporal information (t), and 

polarity (p). This architecture enables event data to achieve 

high dynamic range and spatiotemporal resolution while mit-

igating motion blur and reducing power consumption. 



However, the inability to capture color information remains a 

significant limitation, restricting its applications. [2] 

The development of machine vision is increasingly in-

spired by biological principles, with neuromorphic computing 

emerging as a key research area aimed at reducing energy 

consumption. Early models such as the Hodgkin-Huxley 

model provided precise representations of neural dynamics 

but were difficult to implement in practice. Consequently, the 

Leaky Integrate-and-Fire (LIF) model became the foundation 

for SNNs. However, due to the discrete nature of spike-based 

signals, SNNs face challenges in utilizing gradient descent for 

weight optimization, leading to the Dead Neuron Problem [3, 

4]. To address this issue, researchers have proposed ANN-to-

SNN conversion methods, modifying Convolutional Neural 

Network (CNN) weights and integrating the Integrate-and-

Fire (IF) mechanism to transform CNNs into SNNs. While 

this approach enhances performance, it requires extended 

computational time. Alternative solutions, such as Super-

Spike [5] and SLAYER [6], approximate spike functions with 

steep curves, making them differentiable for weight updates. 

SLAYER further refines this approach by incorporating time-

dependent error distribution strategies. 

However, methods like SLAYER cannot be easily ap-

plied to other SNN models. The development of Surrogate 

Gradient Descent [7] techniques has enabled weight updates 

through differentiable approximations, effectively mitigating 

the dead neuron problem. This advancement has driven the 

evolution of SNN architectures such as DECOLLE[8], S-Res-

Net [9], SEW-ResNet [10] and SpikFormer [11]. DECOLLE 

introduces a local learning strategy to reduce memory con-

sumption, while S-ResNet pioneers the integration of ResNet 

structures into SNNs, albeit with training instability. SEW-

ResNet resolves residual learning challenges with its Spike-

Element-Wise (SEW) module, enabling the successful train-

ing of deep SNNs with over 100 layers. Meanwhile, Spik-

Former incorporates a Transformer-based architecture, utiliz-

ing Spiking Self-Attention (SSA) to convert floating-point 

values into spike representations, thereby reducing computa-

tional complexity and power consumption through additive 

operations. 

The encoding methods used in SNNs are diverse. Early 

research primarily relied on spike-based neural coding, such 

as Rate Coding and Temporal Coding. Rate Coding encodes 

information based on spike frequency, with common variants 

including Count Rate Coding, Density Rate Coding, and Pop-

ulation Rate Coding. In contrast, Temporal Coding focuses on 

spike timing, also known as Time-to-First-Spike. [3, 4, 12] 

Currently, numerous studies employ event data for train-

ing SNNs, using datasets such as CIFAR10-DVS[13] and 

DVS128-Gesture[14], all captured by event cameras. How-

ever, event cameras are expensive and incapable of recording 

color information. Some studies at-tempt to simulate event 

data from conventional video sequences using methods such 

as PIX2NVS[15] and ESIM[16]. Nevertheless, the lack of 

color information continues to pose a significant challenge. 

To enhance SNN performance, recent studies [10, 11, 17, 

18] have explored training SNNs directly with color static im-

ages, converting them into spike-based representations using 

Spike Encoding Layers. Experimental results indicate that 

this approach significantly improves SNN performance, 

bringing it closer to CNNs. However, the repeated input of 

static images differs from biological vision, and the way 

Spike Encoding Layers process static images does not fully 

align with the mechanisms of biological visual neurons. Thus, 

we argue that non-spike-based signals, such as color static im-

ages, should not be used in training SNNs through repetitive 

input. 

From the perspective of the human visual system, light 

signals are processed by rod and cone cells in the retina before 

being relayed by bipolar and ganglion cells to the brain for 

recognition [19]. However, current SNN training methods 

still differ from biological vision, and bridging this gap re-

mains a crucial direction for future research. 

Therefore, this study examines existing spike-based neu-

ral encoding methods and proposes a neuron-like encoding 

scheme inspired by retinal structures. This approach converts 

static images into spike data while preserving temporal and 

frequency information. Additionally, by designing an artifi-

cial layer of rods and cones, this method integrates color and 

brightness information into spike data in a multi-dimensional 

manner, enabling SNNs to receive near-complete visual sig-

nals. 

Furthermore, we conduct experiments to analyze the im-

pact of neuron-like encoding and the artificial layer of rods 

and cones on SNN performance and evaluate the advantages 

and limitations of the proposed encoding scheme. By exam-

ining the image acquisition process, we highlight the im-

portance of temporal resolution in data representation, lead-

ing to the conceptualization of photon data. Through experi-

ments, we investigate the relationship between temporal res-

olution and static images, as well as its influence on SNN per-

formance, aiming to understand how static images contribute 

to enhancing SNN efficiency. 

2. Method 

In recent developments, SNNs have predominantly uti-

lized static images as input. However, neuromorphic compu-

ting aims for SNNs to process spike signals rather than static 

images. Although Rate Coding and Temporal Coding can 

convert images into Poisson Spikes, these methods often 



result in incomplete information encoding. Therefore, we ex-

plore a more biologically plausible approach to spike genera-

tion. 

Drawing inspiration from the human visual and nervous 

systems, we consider how rod and cone cells in sensory neu-

rons receive light stimuli and convert them into spike signals. 

These cells themselves do not perform filtering or real-time 

information processing; instead, subsequent neurons integrate 

the signals. Based on this observation, we argue that spike 

signals should be generated by neurons and that the conver-

sion process should not interfere with one another. 

The LIF model is a widely used neuron model in neuro-

morphic computing. However, in modern discrete systems 

with low temporal resolution, the use of the LIF model often 

results in excessively long time steps, significantly increasing 

computational cost and processing time. To address this issue, 

we adopt the IF model, which omits the membrane potential 

decay characteristic, allowing for more stable spike genera-

tion over shorter time intervals. This approach, where neuron 

models are used to encode spike signals, is referred to as Neu-

ron Spike Encoding. Specifically, encoding with the LIF 

model is termed LIF Coding, whereas encoding with the IF 

model is referred to as IF Coding. 

The process of energy accumulation in IF Coding can be 

described by (1), where 𝐸𝑚𝑒𝑚(𝑡) represents the membrane 

potential at time 𝑡, and 𝐸𝐿(𝑡) represents the external light 

energy at time 𝑡. The neuron’s spike signal generation is de-

termined by (2), where 𝑆(𝑡) denotes the spike signal at time 

𝑡, and 𝜃 represents the firing threshold. A spike is triggered 

if the membrane potential at time 𝑡, exceeds the firing thresh-

old; otherwise, no spike is generated. Furthermore, when a 

neuron fires a spike, a certain amount of membrane potential 

energy must be converted into the spike signal, reducing the 

membrane potential. This reduction is represented in (3), 

where the membrane potential is decreased by one firing 

threshold unit upon spike generation. 

Regarding the image acquisition process, we assume that 

the external light source corresponds to a static image. During 

the exposure period, energy accumulates while being subject 

to minor fluctuations due to thermal noise and internal circuit 

noise. This process is described by (4), where 𝑇 is the expo-

sure time, 𝑃(𝑇) represents the pixel value obtained after ex-

posure, and 𝐸𝐿(𝑡)  and 𝐸𝑁(𝑡)  represent the external light 

energy and noise energy, respectively, over continuous time 

𝑇. However, since noise typically does not significantly affect 

image formation, we further assume an idealized scenario 

where the imaging process is noise-free. This allows (4) to be 

simplified into (5), where the average accumulated light en-

ergy over the exposure period, 𝐸𝐿_𝑎𝑣𝑔, is equal to the pixel 

value 𝑃(𝑇). 

Next, considering the 8-bit unsigned integer image 

storage format, the light energy values range from 0 to 255 

and are often normalized to a 0–1 scale before processing. 

This normalization is defined in (6), where 𝑃(𝑇) represents 

the pixel value, 𝑀𝐴𝑋𝐼 is the maximum pixel intensity (255 

for uint8 images), and 𝐸𝐿_𝑛𝑜𝑟𝑚  represents the normalized 

pixel value. 

Building upon (5) and (6), we assume 256 discrete sam-

pling time steps within the exposure period 𝑇, setting the in-

itial membrane potential to 0 and the firing threshold to 1 in 

the IF model. Under these conditions, spikes start occurring 

at time step 2 and continue until time step 256. The accumu-

lated spike count reconstructs the image, and the process re-

sets at time step 257. Thus, the IF model can generate spike 

signals that accurately represent static images within 256 dis-

crete time steps. 

 

𝐸𝑚𝑒𝑚(𝑡) = 𝐸𝑚𝑒𝑚(𝑡 − 1) + 𝐸𝐿(𝑡) (1) 

𝑆(𝑡) = {
1, 𝐸𝑚𝑒𝑚(𝑇) > 𝜃

0, 𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒
 (2) 

𝐸𝑚𝑒𝑚(𝑡) = 𝐸𝑚𝑒𝑚(𝑡) − 𝑆(𝑡) × 𝜃 (3) 

𝑃(𝑇) =
∫ 𝐸𝐿(𝑡) + 𝐸𝑁(𝑡)

𝑇
 (4) 

𝑃(𝑇) = 𝐸𝐿_𝑎𝑣𝑔 =
∫ 𝐸𝐿(𝑡)

𝑇
 (5) 

0 ≤
𝑃(𝑇)

𝑀𝐴𝑋𝐼

= 𝐸𝐿_𝑛𝑜𝑟𝑚 ≤ 1 (6) 

 

The human retina primarily consists of cone cells and 

rod cells, whose spike signals collectively form visual percep-

tion. The absence of either type of information can signifi-

cantly affect visual processing. Static color images preserve 

both chromatic and luminance information to the greatest ex-

tent. Therefore, we propose an Artificial Layer of Rods and 

Cones, which converts visual information into spike signals 

through artificial cone and rod cells. These spike signals are 

then provided to a SNN for training, enabling the network to 

learn comprehensive visual representations. 

Artificial cone cells are designed based on the functional 

characteristics of biological cone cells. Using a neuron model, 

they encode color images into spike signals, with separate 

spike encoding applied to the red, green, and blue (RGB) 

channels. In contrast, artificial rod cells are responsible for 

encoding global luminance into spike signals, simulating ret-

inal brightness perception. To achieve this, the luminance 

channel L is incorporated, as expressed in (7). Here, 𝑆𝐶  rep-

resents the generated spike signal, 𝐸𝑛 denotes the encoding 

method, 𝐶 refers to the color channel, and  𝑝𝑐 is the pixel 

intensity of a given channel. This approach aims to maximize 

the simulation of the visual information provided by sensory 

neurons in the retina. 



 

𝑆𝐶 = 𝐸𝑛(𝑝𝑐), 𝐶 = 𝑅, 𝐺, 𝐵, 𝐿 (7) 

 

Based on the image acquisition process of a traditional 

camera, light energy is converted into electrical energy and 

accumulates in a capacitor during the exposure period, with 

partial loss due to the photoelectric effect. The pixel value is 

determined by the accumulated charge. The exposure time 

can be discretized into 𝑋 time steps, where the total expo-

sure time for a static image is 𝑋 × 𝑡 seconds, as expressed in 

(8), where 𝑇 represents the total exposure duration, 𝑋 is the 

number of discrete time steps, and 𝑡 is the sampling interval. 

Assuming that the charge increases at each discrete time step, 

the accumulated electrical energy can be expressed as (9), 

where 𝑄𝑡𝑜𝑡𝑎𝑙  denotes the total accumulated charge in the ca-

pacitor, 𝑄[𝑛]  represents the charge at each sampling in-

stance, and 𝑛 refers to the discrete time step. 

Assuming that the photoelectric effect requires a suffi-

cient amount of photon energy to strike the photosensitive el-

ement, we consider an incoming photon flux composed of 𝑁 

photons. If the photon energy is insufficient, no photons are 

assumed to be detected, as described in (10), where 𝑛 repre-

sents the discrete time step, and 𝑁𝑝[𝑛]  and 𝐸𝐿[𝑛]  denote 

the number of photons and the total light energy at that mo-

ment, respectively. The occurrence of the photoelectric effect 

inevitably leads to energy loss, which is formulated in (11), 

where 𝐸𝐿 is the total light energy, 𝑎 is the energy loss con-

stant, and 𝑄 represents the generated electrical charge. 

If the temporal resolution is increased to the point of cap-

turing the instantaneous occurrence of the photoelectric effect, 

the process can be considered as a discrete event. Thus, (10) 

can be rewritten as (12), where 𝑁 photons are regarded as a 

light energy spike signal. Here, 𝑛  represents the discrete 

time step, and 𝑆[𝑛] and 𝐸𝐿[𝑛] denote the spike signal and 

total light energy at that moment, respectively. Furthermore, 

if we define the minimum energy required for the photoelec-

tric effect as the spike energy, we obtain (13), where 𝐸𝑠 is 

the energy per spike event, 𝑁  is the minimum number of 

photons required to trigger the photoelectric effect, and 𝐸𝑝 is 

the energy per photon. Under this temporal resolution, the to-

tal light energy at time 𝑛 directly influences whether a spike 

signal occurs, as described in (14). By substituting (11) and 

(14) into (9) and reorganizing, we derive (15), where 𝑆𝑠𝑢𝑚 

represents the total number of spikes, 𝑆𝑝[𝑛]  denotes the 

spike signal at time 𝑛, and 𝑋 represents the number of dis-

crete time steps. This formulation closely resembles Count 

Rate Coding, in which the average number of spikes occur-

ring during the exposure period is given by (16). Here, 𝑆𝑎𝑣𝑔 

represents the average spike occurrence during exposure, 

aligning with the formula used in Count Rate Coding.  

The accumulation of photon spike signals reduces tem-

poral resolution, effectively functioning as a downsampling 

operation along the time dimension. Conversely, Count Rate 

Coding simulates spike generation by increasing the number 

of discrete time steps, thereby enhancing temporal resolution, 

effectively serving as upsampling along the time dimension. 

Based on this framework, we define the spike signals ob-

tained from the conversion of static images as Photon Data. 

However, when the photon energy is insufficient to induce the 

photoelectric effect, energy loss still occurs, resembling the 

analog-to-digital conversion error in traditional cameras. This 

results in numerical discrepancies within the Photon Data. 

 

𝑇 = 𝑋 × 𝑡 (8) 

𝑄𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑄[𝑛]
𝑋

𝑛=0
 (9) 

𝑁𝑝[𝑛] = {
𝑁, 𝑖𝑓 𝐸𝐿[𝑛] 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ
0,  𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒

 (10) 

𝐸𝐿 = 𝑎 × 𝑄 (11) 

𝑆[𝑛] = {
1, 𝑖𝑓 𝐸𝐿[𝑛] 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ
0,  𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒

 (12) 

𝐸𝑠 = 𝑁 × 𝐸𝑝 (13) 

𝐸𝐿[𝑛] = 𝑆[𝑛] × 𝐸𝑠  (14) 

𝑆𝑠𝑢𝑚 = ∑ 𝑆𝑝[𝑛]
𝑋

𝑛=0
 (15) 

𝑆𝑎𝑣𝑔 =
𝑆𝑠𝑢𝑚

𝑋
 (16) 

3. Experiment 

Since we consider IF Coding to be an ideal spike encod-

ing method, we first compare the spike characteristics of IF 

Coding, Rate Coding, and Temporal Coding. Assuming five 

normalized pixel values of 0, 0.25, 0.5, 0.75, and 1, the results 

are shown in Figure 1. We observe that while Rate Coding 

generates a large number of spikes, the random triggering 

mechanism results in a lack of temporal relationships between 

spikes, making it difficult to reconstruct the original values 

accurately. In contrast, Temporal Coding produces spikes 

with a clear temporal structure that reflects signal intensity, 

but the overall number of spikes is extremely low. IF Coding, 

however, not only accurately reconstructs the original values 

but also preserves the temporal relationship corresponding to 

signal strength. 

To validate that IF Coding conveys more information, 

we applied IF Coding to convert CIFAR-10 [20] images into 

grayscale and color spike signals and then trained an SNN for  



 
(a) 

 
(b) 

 
(c) 

FIGURE 1. Comparison of Visualized Spike with Different Encoding method. Neuron numbers 0 to 4 correspond to the pixel values 0, 0.25, 0.5, 0.75, and 1, 
respectively. (a) Integrate-and-Fire Coding. (b) Rate Coding. (c) Temporal Coding. 

testing and comparison. The results, presented in Table 1, 

show that across four different SNN models, training with IF 

Coding consistently achieved higher accuracy during testing 

compared to training with Rate Coding and Temporal Coding. 

This confirms that IF Coding carries richer information, ena-

bling SNNs to learn more comprehensive data features. Addi-

tionally, we found that incorporating grayscale images had 

minimal impact on accuracy, potentially due to the distinct 

functional characteristics of cone and rod cells. Furthermore, 

we compared the performance of IF Coding with the Spike 

Encoding Layer for data conversion. The results indicate that 

for SEW-ResNet, both methods achieve comparable accuracy, 

whereas for SpikFormer, the Spike Encoding Layer demon-

strates a slight advantage. However, in terms of temporal rep-

resentation, IF Coding effectively observes the image only 

once within 256 time steps, whereas the Spike Encoding 

Layer continuously processes the full image at each time step, 

leading to an n-fold difference in temporal scale. Despite this 

difference in temporal resolution, IF Coding still performs 

competitively and surpasses conventional encoding methods, 

highlighting the potential of spike encoding based on neural 

operational principles as a promising direction for further de-

velopment. 

Next, we can simulate the generation and acquisition of 

Photon Data and static images through temporal upsampling 

and downsampling. Based on probability theory, when the 

number of discrete time points used for simulation is suffi-

ciently large, the statistical average of the simulated spike sig-

nals converges toward the spike firing probability. 

To determine the required number of time points, we em-

ploy Count Rate Coding for simulation and compare the Peak 

Signal-to-Noise Ratio (PSNR) variations of static images un-

der single-precision floating-point and 8-bit unsigned integer 

formats. Using CIFAR-10 images for testing, we compute the 

average PSNR values for both the training and test datasets. 

As shown in Figure 2, the PSNR curve follows a log-linear 

relationship, where each tenfold increase in discrete time 

points results in an approximate tenfold increase in PSNR. 

When downsampling reaches 1,000 time points, the PSNR 

slope for the 8-bit format begins to flatten, and by 100,000 

time points, it approaches zero. 

 

TABLE 1. Comparison of Accuracy for SNN Training with Different En-
coding Methods and Data Combinations 

Model Accuracy (%) Coding Data Time step 

SLAYER 

47.99 Rate 

L 

256 

48.33 Temporal 

54.14 IF 

50.10 Rate 

RGB 52.95 Temporal 

57.66 IF 

51.09 Rate 

RGBL 54.37 Temporal 

57.38 IF 

DECOLLE 

60.15 Rate 

RGBL 256 

42.10 Temporal 

64.97 IF 

SEW-Resnet 

80.29 Rate 

63.05 Temporal 

83.46 IF 

SpikFormer 

88.70 Rate 

74.41 Temporal 

92.21 IF 

SEW-Resnet 83.42 Encoding 

Layer 

Static 

RGB Image 

6 

SpikFormer 93.34/ *95.19 4 

*The data is sourced from the original research paper. 

 

 
FIGURE 2. PSNR Curve Comparing Downsampled Photon Data-Based 

Static Images and Original Static Images. Although PSNR values vary de-
pending on the images, the overall log-linear trend remains consistent. Here, 

"Trainset" and "Testingset" refer to the training set and testing set of the 

CIFAR-10 dataset, respectively. The suffix "uint8" indicates that the images 
are first converted to the uint8 format before being compared with the origi-

nal images. 

 

In the end, we examine the impact of temporal resolution 

on SNN performance. We generate static images with varying 

resolutions by using 1, 10, 100, 1,000, 10,000, and 100,000 

sets of Photon Data as training inputs for the SNN. The 



corresponding SNN accuracy results are presented in Figure 

3. As temporal resolution increases, SNN accuracy also im-

proves , reaching its peak when each image is generated from 

more than 10,000 sets of Photon Data. This indicates that 

SNN performance is highly dependent on temporal resolution, 

and achieving optimal results requires data with sufficiently 

high temporal resolution. 

4. Conclusion 

In alignment with the principles of neuromorphic com-

puting, we enhance SNN learning efficiency by maximizing 

the information capacity carried by spike signals through 

Neuron Spike Encoding and the Artificial Layer of Rods and 

Cones. Additionally, we identify the critical role of temporal 

resolution in various data types, including static images, spike 

data, and photon data, and its significant impact on SNN per-

formance. We hope this study will drive further advancements, 

enabling SNNs to overcome current limitations and expand 

their application domains. 

 

 
FIGURE 3. Accuracy Comparison Curve of Static Images with Different 

Temporal Resolutions on the CIFAR-10 Test Dataset. As the photon data 

count increases, the resulting accuracy improves accordingly. However, 
when each static image is obtained through downsampling from 1,000 photon 

data counts, the accuracy growth begins to plateau. Due to its inherent char-

acteristics, the SLAYER model failed to converge and was therefore not uti-
lized in this experiment. 
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