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Abstract 
Conventional health monitoring technologies for elderly 

populations face significant adoption barriers including clinical 
appearance, usability challenges, and stigmatization. Garden 
Watch addresses these obstacles through an open-source 
framework that embeds monitoring capabilities within a 
decorative steel owl garden statue. By leveraging the 
therapeutic context of home gardening where elderly engage in 
planting, watering, and nurturing living plants, our system 
transforms health monitoring into an aesthetically pleasing 
experience. The ESP32-C3-based implementation uses privacy-
preserving sensors to establish personalized behavioral 
baselines while the owl's mechanical features (nodding, audio, 
vibration) serve dual purposes by providing plant care 
reminders for watering schedules and seasonal plantings while 
performing unobtrusive wellness checks. Experimental results 
confirm the system's ability to detect meaningful behavioral 
changes while maintaining a non-clinical appearance. This 
zoomorphic approach integrates monitoring technology into 
garden environments where older adults find purpose and joy, 
aiming to preserve dignity and autonomy while providing 
health insights that may support independent living among 
elderly gardening enthusiasts. 
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1. Introduction 

The aging population strains healthcare systems 

worldwide, necessitating effective monitoring solutions for 

independent elderly living that respect autonomy [1]. 

Conventional technologies face adoption barriers due to 

clinical aesthetics, usability issues, privacy concerns, cost, 

and stigma [2], [3], with complex interfaces, perceived 

surveillance implications, and privacy fears significantly 

reducing acceptance among elderly populations [4]. 

 

 
Fig. 1. Garden Watch fits into an indoor gardening setting, its owl design 
blending zoomorphic aesthetics with decorative and unobtrusive monitoring 
roles for elderly users. 

Therapeutic gardening, beneficial for physical, 
cognitive, and emotional health in older adults [5], provides 
an unobtrusive setting for monitoring. Ambient systems can 
detect behavioral shifts 11 days before health events, 
supporting early intervention  [6], [7]. Long-term 
observational work has demonstrated that continuous 
monitoring can document deviations in activities that 
correlate with cognitive decline, frailty, and increased 
hospitalization risk [8]. 

Studies have demonstrated the efficacy of establishing 
personalized baselines for detecting health changes, 
achieving high accuracy (area under the ROC curve of 0.97) 
in predicting transitions to higher care levels [9]. However, 
conventional monitoring systems typically appear clinical 
and institutional, creating resistance among users who fear 
being labeled as "frail" or dependent [10]. Research shows 

that sensor-integrated companion systems can effectively 

monitor the elderly while offering a human-friendly 

appearance that supports aging-in-place, avoiding clinical 

aesthetics [11]. Additionally, advanced behavior estimation 

with fuzzy inference-based neural networks can accurately 

interpret complex daily activity patterns while ensuring 

dignity and privacy [12]. This framework embeds 



 

 

monitoring in a steel owl statue, leveraging zoomorphic 
design to reduce stigma and enhance acceptance [13], [14]. 

 
Fig. 2. Garden Watch blends into an indoor gardening setting, its owl-
shaped design merging zoomorphic aesthetics with decorative and 
unobtrusive monitoring functions for elderly users. 

This research addresses these challenges by developing 

Garden Watch, as shown in Fig. 1, an innovative monitoring 

framework embedded within a decorative garden element, 

specifically a steel owl statue positioned among potted herbs 

and flowering plants. Guided by the OWL (Organizing Well-

being for Life) framework, which integrates health 

monitoring technologies into familiar everyday 

environments to support elderly independence while 

preserving dignity, Garden Watch transforms health 

monitoring from a clinical activity into a natural extension of 

therapeutic gardening practices. By incorporating a separate 

detection module that uses low-resolution thermal 

(AMG8833, 8×8) and depth (VL53L5X, 8×8) sensors, we 

create a privacy-preserving monitoring system that works 

alongside an aesthetically pleasing garden ornament. This 

approach maintains complete user privacy while providing 

more reliable presence detection than conventional PIR 

sensors in the cultivation space, addressing both the 

functional monitoring requirements and the critical social-

psychological factors affecting technology acceptance [15]. 
Our framework, implemented for the ESP32-C3 

microcontroller architecture, establishes personalized 

activity baselines through pattern recognition algorithms 

while optimizing power management, wireless connectivity, 

and non-intrusive interaction within indoor gardening 

environments. The system utilizes the owl's mechanical 

capabilities, which are nodding motions, vibration, and audio 

feedback, to provide both plant care reminders (watering 

schedules, fertilization timing, seasonal planting cues) and 

wellness check prompts in a socially acceptable manner [16] 
that enhances the overall gardening experience. The entire 

implementation is available as an open-source project on 

GitHub https://github.com/anh0001/esp32-owl-companion.git, 

enabling reproducibility and further development by the 

research community and home gardening enthusiasts. 

Garden Watch operates through a workflow that 

balances monitoring with user dignity. The system begins 

with a learning phase to establish personalized activity 

baselines in the garden space. During operation, sensors 

detect human presence at regular intervals, with local data 

processing ensuring privacy. The owl delivers dual-purpose 

interactions through nodding, audio tones, and vibration that 

serve both as gardening reminders and wellness checks. 

When activity patterns deviate from baselines, the system 

can increase interactions or alert caregivers. This approach 

enables Garden Watch to function simultaneously as a 

gardening companion and monitoring system without the 

stigma of traditional health technologies. 

2. Proposed Method 

Garden Watch is an open-source framework designed 

for non-intrusive behavioral monitoring of the elderly. It 

utilizes a zoomorphic garden statue to integrate seamlessly 

into the therapeutic context of home gardening. This 

approach avoids the clinical aesthetics of traditional 

monitoring systems, harnessing gardening’s proven benefits, 

including physical activity, cognitive enhancement, and 

emotional well-being. 
Our research integrates passive monitoring with a 

zoomorphic design in the therapeutic gardening context, 

extending beyond indoor-focused prior work to outdoor 

spaces, enhancing elderly well-being, and overcoming 

social-psychological adoption barriers. 
The framework consists of three integrated components: 

(1) a physical zoomorphic design in the form of a steel owl 

statue, (2) a hardware implementation based on the ESP32-

C3 microcontroller architecture, and (3) a software system 

for behavioral pattern recognition and interaction 

management. 

3.1 Zoomorphic Design Implementation 

The system is embodied in a 200mm steel owl statue 

with a detachable 100mm head and 75mm bowl-shaped body, 

as shown in Fig. 2. It leveraging zoomorphic, non-clinical 

traits to minimize medical stigmatization [13], [14]. 
The owl integrates seamlessly into garden settings 

without hinting at medical monitoring. It features a nodding 

mechanism (15° forward, 10° back), audio, and vibration for 

plant care and health prompts. The body encases electronics 

while retaining garden-appropriate aesthetics, with a 

magnetic detachable head for maintenance and a bronze or 

copper finish enhancing its decorative, unobtrusive 

monitoring role. 

https://github.com/anh0001/esp32-owl-companion.git


 

 

 
Fig. 3. System architecture diagram of Garden Watch, depicting power 
(battery, management), control (ESP32-C3), and interface connections, with 
a modular detachable head balancing functionality and aesthetics. 

3.2 Hardware Architecture 

The system leverages the M5Stamp C3U with an 

ESP32-C3 RISC-V processor (160MHz), chosen for its 

power efficiency, Wi-Fi connectivity (802.11 b/g/n), and 

adequate processing power for pattern recognition, 

supporting extended battery-powered operation. 
The StampTimerPower module manages battery 

charging, 3.3V/5V regulation, and real-time clock functions, 

powered by a 3.7V 1000mAh LiPo battery with USB-C 

charging. User feedback is enabled via a 28mm speaker with 

an amplifier and a vibration motor for audio-haptic 

interaction. 
 

 
Fig. 4. Bottom layer of Garden Watch contains the audio subsystem (28mm 
speaker, MAX98357A amplifier) in a 3D-printed housing, supporting non-
intrusive feedback for plant care and wellness checks. 

 
Fig. 5. Middle layer implementation showing the power and motion 
subsystems, including the LiPo battery (1000mAh), servo motor for 
nodding motion, and mini vibration motor for haptic feedback. This 
arrangement optimizes weight distribution while maintaining the garden 
ornament's aesthetic exterior. 

 
Fig. 6. Top layer with control circuitry (M5Stamp C3U, ESP32-C3; 
StampTimerPower), optimized for functionality and compactness, with 
capacitors addressing audio interference. 

We stacked the hardware bottom (Fig. 4), middle (Fig. 

5), and top (Fig. 6) layers to create a modular design as 

shown in Fig. 7. 
In practice, we found a noise from the boost converter 

was mitigated by integrating filter capacitors at the battery 

input and BAT_OUT pins, ensuring stable power and 

minimal audio interference. Software restrictions on 

vibration motor duration prevent voltage drops from 

impacting the 5V boost converter. 

   
Fig. 7. Modular assembly of Garden Watch, stacking functional layers for 
easy installation and maintenance, ensuring serviceability and aesthetic, 
non-clinical design. 

A dedicated module, shown in Fig. 8, employs 

AMG8833 (8×8 IR) and VL53L5X (8×8 ToF) sensors 

connected to the ESP32-C3 architecture for privacy-

preserving human detection. 

 

Fig. 8. Privacy-preserving sensor module hardware, compactly integrating 
AMG8833 (8×8 thermal) and VL53L5X (8×8 ToF) sensors, 1.8cm apart, 
with ESP32-C3, enabling separate wireless monitoring. 

Unlike PIR sensors, this module identifies stationary 

human presence via temperature (22-31°C) and depth data, 

reducing false positives and aligning with elderly monitoring 

acceptance [17]. 
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3.3 Software Framework 

The software framework, as shown in Fig. 3, 

implements three core functions: activity monitoring, pattern 

recognition, and user interaction. 

3.3.1 Activity Monitoring Algorithm 

This algorithm combines thermal and depth sensor data 

to accurately detect human presence. 
Thermal sensor data processing: The thermal sensor 

captures temperature readings in an 8 × 8  grid. Human 

body temperature typically ranges from 22°C to 31°C at the 

sensor's detection range. 𝑇(𝑖, 𝑗)  is thermal reading at 

position (𝑖, 𝑗) in the 8 × 8 grid. 

𝐻(𝑖, 𝑗) = {
1,     if 22∘C ≤ 𝑇(𝑖, 𝑗) ≤ 31∘C

0,     otherwise
 (1) 

Depth sensor validation: The depth sensor ensures 

detected heat sources are within a specific range, minimizing 

false positives. 𝐷(𝑖, 𝑗)  is depth reading at position (𝑖, 𝑗)  at 

time 𝑡 , 𝐷𝑝𝑟𝑒𝑣(𝑖, 𝑗)  is the previous reading at time 𝑡 − 1 , 

and 𝛥𝐷(𝑖, 𝑗) = |𝐷(𝑖, 𝑗) − 𝐷𝑝𝑟𝑒𝑣(𝑖, 𝑗)|. 

𝑉(𝑖, 𝑗) = {
1,     if 𝐷𝑚𝑖𝑛 ≤ 𝐷(𝑖, 𝑗)  ≤ 𝐷𝑚𝑎𝑥 𝐴𝑁𝐷 𝛥𝐷(𝑖, 𝑗) ≥ 𝐷𝑡ℎ

0,     otherwise
 (2) 

where 𝐷𝑚𝑖𝑛  and 𝐷𝑚𝑎𝑥  define the attention range for 

human detection (typically 0.5m to 3m) and 𝐷𝑡ℎ  is the 

minimum change required to indicate movement (typically 

5-10cm depending on sensor sensitivity). 
Human presence detection: Combining thermal and 

depth sensor validation results to confirm human presence. 

𝐶(𝑖, 𝑗) = 𝐻(𝑖, 𝑗) ⋅ 𝑉(𝑖, 𝑗)    (3) 

P = {
1,     if ∑ ∑ 𝐶(𝑖, 𝑗)7

𝑗=0
7
𝑖=0 ≥ 𝜃𝑃

0,     otherwise
  (4) 

Where 𝜃𝑃  is a threshold indicating the minimum 

number of valid pixels required to confirm presence 

(typically 3-5 pixels). 
This method enhances detection reliability over 

traditional PIR sensors, upholding low power needs and user 

privacy, consistent with privacy-focused techniques critical 

for acceptance [18]. 

3.3.2 Pattern Recognition Algorithm 

This algorithm identifies deviations from established 

daily and weekly activity patterns, helping to detect unusual 

behaviors early. 
Daily activity presence: The system logs activity 

within hourly slots each day 𝐴𝑑(𝑡)  is 

activity presence during an hour on the day𝑑.  
Baseline weekly pattern: An average pattern of user 

activity is calculated over multiple weeks to create a reliable 

reference: 

𝐵(𝑡, 𝑤) =
1

𝑁
∑ 𝐴𝑑+7(𝑤−1)(𝑡)𝑁

𝑑=1  (5) 

Where 𝑤 ∈ {1,2, … ,7} represents the days of the week. 
Deviation detection: The standard deviation is 

calculated to quantify typical variability in user activity: 

𝜎(𝑡, 𝑤) = √1

𝑁
∑ (𝐴𝑑+7(𝑤−1)(𝑡) − 𝐵(𝑡, 𝑤))

2
𝑁
𝑑=1  (6)  

Activity deviation score: This measures how 

significantly current activity deviates from the expected 

pattern: 

𝑆𝑑(𝑡) =
|𝐴𝑑(𝑡)−𝐵(𝑡,𝑤𝑑)|

𝜎(𝑡,𝑤𝑑)+𝜖
   (7) 

Where 𝑤𝑑  is the current day of the week, and 𝜖 

prevents division by zero. 
Alert generation: Alerts are generated if the deviation 

exceeds a predefined threshold: 

𝐴𝑙𝑒𝑟𝑡𝑑 = {
1,      if ∑ 𝑆𝑑(𝑡)24

𝑡=1 ≥ 𝜃𝐴

0,      otherwise
 (8) 

Where 𝜃𝐴 sets the sensitivity of the alert system. 
This approach is supported by research demonstrating 

that personalized baselines enable the detection of health 

changes up to 11 days before adverse events [6]. 
Upon detecting deviations, the system triggers local 

notifications via the owl’s features or remote Wi-Fi alerts, 

ensuring timely information for users and caregivers 

3.3.3 User Interaction Algorithm 

This algorithm schedules interactions to remind users of 

plant care tasks and perform wellness checks based on 

activity. 
Plant care reminder scheduling: Reminders are 

periodically scheduled based on the frequency and preferred 

time: 

𝑅𝑝𝑙𝑎𝑛𝑡(𝑑, 𝑡) = {
1,    if (𝑑 𝑚𝑜𝑑 𝑓𝑝𝑙𝑎𝑛𝑡) = 0 and 𝑡 = 𝑡𝑝𝑙𝑎𝑛𝑡

0,    otherwise
 (9) 

Wellness check prompts (based on inactivity): The 

system prompts interactions during periods of inactivity in 

usual activity time windows: 

𝐼𝑑(𝑡) = {
1,    if ∑ 𝐴𝑑(𝑖)𝑡

𝑖=𝑡−Δ𝑡 = 0 and usual activity time

0,    otherwise
 (10) 



 

 

Where Δ𝑡 defines the inactivity threshold. 
Interaction decision: The interaction type is 

determined based on the scheduled reminders or detected 

inactivity/alerts: 

𝑀(𝑡) = {

𝑀𝑝𝑙𝑎𝑛𝑡 ,     if 𝑅𝑝𝑙𝑎𝑛𝑡(𝑑, 𝑡) = 1

𝑀𝑤𝑒𝑙𝑙𝑛𝑒𝑠𝑠 ,     if 𝐼𝑑(𝑡) = 1 or 𝐴𝑙𝑒𝑟𝑡𝑑 = 1
𝑀𝑛𝑜𝑟𝑚𝑎𝑙 ,     otherwise

    (11) 

Interaction modes 𝑀𝑝𝑙𝑎𝑛𝑡 , 𝑀𝑤𝑒𝑙𝑙𝑛𝑒𝑠𝑠 , and 𝑀𝑛𝑜𝑟𝑚𝑎𝑙  

utilize combinations of audio feedback, nodding movements, 

and vibration cues. 
The interaction design deliberately avoids complex 

voice commands or screen-based interfaces that prior 

research has identified as barriers for elderly users [16]. 

Instead, basic physical interactions (such as a person’s 

appearance) provide sufficient feedback while remaining 

accessible to users with varying levels of technical literacy. 

3. Experiments 

Garden Watch employs a RESTful HTTP API for 

remote control and monitoring of the owl robot. The API 

integrates with healthcare systems and is testable via 

standard tools. Key endpoints include /status (GET) for 

device state (battery, detection), /control/motion (POST) for 

nodding motion, /control/audio (POST) for audio feedback, 

/control/vibration (POST) for haptic feedback, and 

/data/activity (GET) for historical data. 
The Garden Watch sensor module adopts an energy-

efficient approach, sampling at 5-minute intervals using 

AMG8833 thermal and VL53L5X depth sensors to detect a 

human presence (22-31°C range) with local processing. 

Hourly statistical summaries (detection counts, averages) are 

transmitted via the RESTful API, reducing communication 

overhead and enhancing battery life, while low-resolution 

8×8 grids, as shown in Fig. 9. 

 
Fig. 9. Sensor output comparison: (A) AMG8833 (8×8 thermal) showing 
human signature, (B) VL53L5X (8×8 ToF) with distance data, (C) RGB 
reference (development only). Low-resolution sensors (A, B) enable reliable, 
privacy-preserving presence detection. 

The Garden Watch framework was evaluated through 

experiments monitoring garden activity patterns using 

simulated data from typical elderly gardening behaviors, 

testing pattern recognition and alert generation. Daily garden 

engagement analysis established healthy baseline rhythms, 

with peaks at 80-90% (6-8am), 60-70% (10am-12pm), and 

70-80% (5-7pm), and <10% nighttime activity (10pm-5am), 

which is shown in Fig. 10. 

 

 
Fig. 10. Comparison of healthy versus concerning daily garden activity 
patterns. Healthy behavior (top) shows expected peaks during morning 
garden checks (6-8am), midday maintenance (10am-12pm), and evening 
care (5-7pm), while concerning patterns (bottom) exhibit reduced daytime 
gardening engagement and elevated nighttime activity. 

The concerning pattern exhibited reduced activity: 30-

35% morning, 20% midday, 15-20% evening, and elevated 

20% nighttime activity. 
Weekly analysis showed healthy patterns with 3-5 tasks 

and 40-70 minutes daily, versus concerning patterns with 0-

1 tasks, <20 minutes, and irregular engagement. 
Longitudinal four-week monitoring showed stable 

deviation scores (<0.5) in weeks 1-2, rising above 1.5 in 

weeks 3-4 Fig. 11, detecting changes 8-10 days early, align 

with prior findings of 11-day detection windows. 

 
Fig. 11. Displays the deviation score analysis calculated using Eq. 7 from 
our framework. 

Our experimental results yielded several important 

insights. The Garden Watch framework successfully 

identified behavioral changes before they reached critical 

thresholds, providing a valuable early warning system. By 

embedding monitoring within natural gardening activities, 

the system gathered meaningful health insights without the 
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stigmatizing appearance of conventional medical technology. 

The combination of daily rhythm analysis, weekly task 

completion tracking, and response time monitoring provided 

a comprehensive view of well-being. The deviation score Eq. 

7 effectively distinguished normal variations from the 

concerning changes. Additionally, the zoomorphic owl 

design avoided clinical appearance, addressing a primary 

barrier to technology adoption among elderly populations. 

Future work targeting real-world validation and algorithm 

refinement. 

4. Conclusions 

This research introduces Garden Watch, an open-source 

framework that integrates behavioral monitoring within a 

zoomorphic garden statue. By leveraging the therapeutic 

benefits of home gardening, a widely practiced activity that 

promotes physical, cognitive, and emotional well-being 

among older adults. Our approach offers a potential solution 

to the stigmatization and clinical appearance that typically 

hinder technology adoption. The ESP32-based 

implementation demonstrates how monitoring can be 

embedded within familiar, aesthetically pleasing objects that 

preserve dignity and autonomy. While further evaluation is 

needed to assess long-term adoption, this work contributes 

an accessible, reproducible foundation for developing non-

intrusive monitoring solutions that respect both the technical 

and psychosocial needs of elderly users. 
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