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Abstract:

With the emergence of large-scale and time-varying
signals on graphs, product graphs have recently been used
to handle these signals and approximate data topologies
De-
veloping effective frequency analysis methods is then a

by integrating spatial and temporal factor graphs.

fundamental issue in signal processing on product graphs.
However, given the specific structure of product graphs, we
theoretically show that the frequency gathering problem is
highly likely to occur, potentially undermining the efficiency
of frequency analysis. To address this issue, this paper
proposes a novel weighted strong product graph, utilizing a
weighted combination of Cartesian and Kronecker product
graphs. We introduce the concept of frequency equilibrium
to quantify the extent of frequency gathering in product
graphs.  We then derive the frequency characteristics of
weighted strong product graphs and design a weighting
Ex-
perimental results demonstrate that the proposed weighted

minimization model to determine the optimal weights.

strong product graphs and weighting model achieve superior
frequency equilibrium compared to other product graphs.
Keywords:

product graphs, frequency gathering problem, frequency
equilibrium, weighted strong product graphs

1. Introduction

Graphs provide general representations for various
types of real-world data, including their geometric and
relational structures. A variety of methods has emerged
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to analyze what is known as graph signals, leading to the
development of the emerging field of graph signal process-
ing [1,2]. Fundamental graph signal processing encom-
passes frequency analysis, graph learning, and graph fil-
tering. With the advent of the big data era, as the num-
ber of nodes in a graph increases, graph signal processing
operations demand more memory and computational re-
sources. One solution to this challenge is the application
of graph operations in neural networks, where graph neu-
ral networks have become prevalent deep learning mod-
els for analyzing structured data [3,4]. Another recently
discussed solution is the use of product graphs, which
leverage the product of smaller-scale graphs to approxi-
mate large-scale data structures [5, 6], thereby providing
effective models to improve data storage, memory access,
and computational costs [7]. Three types of products are
widely discussed, namely the Cartesian product, the Kro-
necker product, and the strong product [8]. Utilizing these
product graphs, novel graph models can be designed to
handle time-varying graph signals, facilitating the design
of graph filters and signal prediction models [9-11].

Similar to general graph signal processing theory, fre-
quency analysis is a fundamental issue in signal processing
on product graphs, where the spectrum of factor graphs
determines the frequency characteristics of the product
graph. When factor graphs are unknown, designing spe-
cific models to learn these factor graphs becomes essential.
Kadambari et al. developed product graph learning mod-
els constrained by data smoothness [12], as well as sparsity
and rank [13]. With desired spectral templates, Einizade
et al. proposed a product graph learning model that ac-
commodates any type of product graph, even those with
more than two factor graphs [14]. Once the factor graphs



are obtained, frequency analysis on product graphs can
be established. Cheng et al. introduced two SVD-based
Fourier transform GFTs for the directed Cartesian prod-
uct graph [15].

Compared to Cartesian product graphs, strong prod-
uct graphs integrate data structures from the Kronecker
product and thus offer a different frequency representa-
tion of graph signals [7]. They could integrate additional
interactions between nodes in the graph and thus provide
more precise models for time-varying signals [16]. How-
ever, as will be seen in our analysis, the eigenvalues of
strong product graphs could be too clustered or repeated,
performing as a frequency gathering problem. In applica-
tions of graph filters, similar eigenvalue gathering problem
in general dense graphs could reduce the representation
ability of the graph wavelet filter banks [17]. Additionally,
it is proved that the number of distinguishable Laplacian
eigenvalues plays a key role in determining the expression
ability of the spectral graph neural network [18].

To solve the frequency gathering of strong product
graphs, this paper introduces a novel concept of frequency
equilibrium to measure the extent of frequency gathering
in product graphs. Our theoretical analysis reveals that
frequency gathering primarily originates from the Kro-
necker product. To mitigate this issue, we propose a new
type of product called the weighted strong product. This
graph is defined as a weighted combination of Cartesian
and Kronecker products, which helps preserve geometric
features while reducing the impact of frequency gathering
caused by the Kronecker product.

In this paper, we present the following contributions:

o We present an analysis on the frequency distribution
of strong products, and theoretically prove that the
frequency gathering problem is highly likely to occur
on product graphs.

e We introduce a novel concept of frequency equilib-
rium to evaluate the equilibrium of frequency distri-
bution in product graphs.

e We propose a novel definition of the weighted strong
product graph and establish a frequency equilibrium
minimization model to determine the optimal weights
for this product graph.

e Our experiments demonstrate that the proposed
weighted strong product graphs, when using optimal
weights, achieve better frequency equilibrium com-
pared to the original strong product graphs.

The rest of this paper is organized as follows. Sec-
tion 2 includes the background of the product graphs. In
Section 3, we provide a theoretical analysis of product
graph frequencies. We then introduce the concepts of fre-
quency equilibrium and weighted strong product graph,
and present an optimization model for calculating the op-
timal weights for the weighted strong product graph. Sec-
tion 4 presents experimental results on random networks.
Finally, Section 5 concludes this paper.

2.  Preliminary

In this section, we briefly introduce the definitions of
three fundamental types of product graphs: the Cartesian,
Kronecker and strong product graphs. We also discuss the
concept of graph frequency with respect to the adjacency
matrix.

2.1 Adjacency Matrices of Product Graphs

Consider an undirected graph G = (V,&) with |V
nodes, where V and £ denote the sets of nodes and edges,
respectively. The graph is stored by the weighted adja-
cency A=(a; ;) whose entry a; ; represents the weight as-
signed to the edge between node ¢ and node j. A graph G
is called unweighted, if a; ;j=1.

Consider two undirected graphs Gp = (Vp,Ep) and
Go = Vo, &q) with |Vp| = P and |Vg| = Q nodes, respec-
tively. Let Ap € RPXP and Ag € R®*® be the weighted
adjacency matrix of Gp and Gq, respectively. The prod-
uct of two graphs Gp and G is denoted as Go = GpOGg
with |Vp||Vg| = PQ nodes and its adjacency is denoted
as Ao = ApOAg € RPEXPQ where ¢ is any kind of
products.

For the Kronecker product, denoted as Gx = Gp x Gg,
the adjacency matrix is

A, =Ap® Ao, (1)

where ® denotes the Kronecker product of matrices.
We denote the Cartesian product of Gp and Gg as
6o = GplGg, the corresponding adjacency matrix is

given by:
ADZAP®IQ+IP®AQ. (2)
For the strong product, denoted as Gg = Gp X Gg, we
define its adjacency matrix as:
Ag =Ag+ Ay

3
=Ap@Ig+Ip®Ag+Ap®Ag. )



2.2 Graph Frequency of Product Graphs

For an undirected graph G of order N, the adjacency
matrix A is symmetric and its eigendecomposition is

A=VAVT, (4)
where V. = [vg,...,un—_1] is the orthogonal matrix of
the N eigenvectors of A, and the diagonal matrix A =
diag{Xg, ..., Aw—1} consists of the corresponding eigenval-
ues. The eigenvalues A, of the adjacency A represent
graph frequency, and the eigenvectors v, represent the
associated graph frequency components.

We can order the graph frequencies according to the
total variation of the corresponding spectral component
through
A

o] ®)

Using this, the graph frequencies are order as A\, < A, if
the total variation of the associated spectral components
are satisfy TVg(v,,) > TVg(v,) [19]. Therefore, if a
graph has a real spectrum, the order of graph frequencies
from low to high is Ag > Ay > -+ > An_1.

Suppose that the eigendecomposition of the factor
graph adjacency matrices Ap and Ag are A, = VA VT,
r € {P,Q}, where Ap = diag{uo,...,up-1}, Ag =
diag{no,...,ng—1}, and their diagonal entries are ar-
ranged in a nonincreasing order. If we denoted V =
Vp ® Vg, then the eigendecomposition of the adjacency
matrix Ag is [20]

TVg(’Uk) = ‘]. —

([0

Ag=V(ApaIg+IpAg)VT, (6)

the eigendecomposition of the adjacency matrix A is
(7)

and the eigendecomposition of the adjacency matrix Ay
is

A, =V(Ap®Ag)VT,

Agx=VAp@Ig+Ip@Aqg+Ap®@Ag)VT. (8)

We can observe that the frequecny components of these
three product graphs are consistent, but their correspond-
ing frequencies are different. For the Cartesian, Kro-
necker and strong product graphs, their frequencies are
Hom + Thspbemn and. fy + M + pmn, 0 <m < P —1 and
0 <n < @ —1, respectively. That is, the eigenvalues of
the product graph are formulated by the eigenvalues of
the factor graphs.

3 Weighted strong product graph

In this section, we theoretically analyze the frequency
gathering problem in product graphs, propose the def-
inition of frequency equilibrium, and introduce a novel
weighted strong product graph and an optimal weighting
model to alleviate the gathering problem.

3.1 Analysis on product graph frequencies

Consider the factor graph adjacency matrices A p and
Ag, with their eigenvalues iy, 7p, 0 < m < P —1
and 0 < n < @Q — 1, respectively. We denote C=(cy, »),
K:(km,n) and S:(Sm,,n)a with Cm,n:,um,+7]n7 km,n:,ufmnn
and Sy, n={tm +Mn + tm M- The (m,n)-th element in these
eigenvalue matrices denotes the frequency associated with
the (m,n)-th frequency component of the product graphs.
The following propositions demonstrate that the strong
product graph is highly likely to have repeated and gath-
ered frequencies.

Proposition 3.1 For the strong product graph G, suppose
its eigenvalues are y, + 7n + UmTn, for 0 < m < P — 1,
0<n<Q@-1. When y,,, = —1orn, = —1, all eigenvalues
of the m-th row or n-th column in S are —1.

Proof. For the eigenvalue pi,, +7,+ ftmn of S, if p, = —1,
we have i, +0n + pmn=—14+n,—1,=—1,0<n < Q—1.
That is, the eigenvalues of the m-th row in S are —1. The
analysis for 7, = —1 is analogous to that for u,, = —1. B

Proposition 3.2 For the Kronecker product graph G, =
Gp X Gg, suppose that the frequencies of the factor graphs
are independent and let m,, := max(i,,), m, := max(n,).
If the probabilities P(|um| < emy,) = p1 and P(|n,| <
cmy,) = py are given, with 0 < ¢ < 1, we have P(|pmn,| <
cmymy) > pi+p2 — pipa.

Proof. Since the frequencies of the factor graphs are inde-
pendent, considering || < cm,, or |n,| < cm,,, we have:
Pllptn] < emumy) > Pl < em,)P(ma| < m,) +
Plltnl < m,)Pln] < emy) = Pllpim| < cmy)Pinal <
cmy) = p1 + p2 — pipa- u

In fact, suppose that the frequencies of the fac-
tor graphs are uniformly distributed, i.e., for ¢=0.5,
p1=p2=0.5. We have p; + p2 — p1p2=0.75. Proposition 3.2
shows that the Kronecker product graph frequency could
gather around the frequency band |pmn,| < 0.5m,m,
with a probability greater than 0.75, even though the fac-
tor frequencies are uniformly distributed.



For the strong product graph Gx, its eigenvalues are
i + M+ b = (m + 1) (0, + 1) — 1. Similar results
to Proposition 3.2 for the strong product graphs could
be obtained through a similar analysis, indicating similar
frequency gathering problem of strong product graphs.

In the following, we propose a novel weighting scheme
to alleviate the frequency gathering problem associated
with strong product graphs.

3.2 Frequency equilibrium

To address the frequency gathering problem, a fun-
damental issue is how to measure its severity. In this
section, we propose a novel definition of frequency equi-
librium based on the difference between adjacent frequen-
cies. If the frequencies are in equilibrium, then the dif-
ference between each pair of adjacent frequencies should
be constant. Note that the row eigenvalue differences in
the eigenvalue matrix of the product graph are primarily
influenced by the eigenvalues of the second factor graph,
while the column eigenvalue differences are predominantly
influenced by the first factor graph. We then use the row
and column range-to-scale ratios of the eigenvalues as ref-
erence frequency intervals. Frequency equilibrium is then
defined by computing the distance of adjacent frequency
differences from these row and column reference frequency
intervals.

Definition 1 For the product graph Go=Gp< G, its eigen-
value matrix is denoted by Z=(2,,,) € RFXFQ We
define the frequency equilibrium of G¢ in terms of Z by

P
Fo=>_

[u
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the column and row reference frequency interval of Z, re-
spectively.

The frequency equilibrium could be applied on dif-
ferent product matrices by letting Z be C=(cpn),
K=(kp, n), and S=(s,,.,), respectively.

For convenience, we can rewrite (9) in matrix form:

Fo =25 = Z1| — doa1lF + |24 — Z2| — do 21]§ (10)

where Z1, Zs, Z3 and Z4 are the sub-matrices of Z ob-
tained by deleting the last column, the last row, the first
column and the first row of Z, respectively.

From Equations (9) and (10), it is clear that the closer
the adjacent frequency differences are to the reference fre-
quency intervals, the smaller the frequency equilibrium.

3.3 Weighted Strong Product Graph

Based on the analysis in the previous sections, we now
introduce the concept of weighted strong product and de-
termine the optimal weights to solve the frequency gath-
ering problem.

Definition 2 Given two undirected factor graphs Gp =
(Vp,Ep) and G = (Vg, &) and two real numbers « and
B. We define the weighted strong product of Gp and Gg
by G = Gp ® G, and its adjacency matrix by:

A@ = OZAD + ,BAX

=a(Ap@Ig+IpRAg)+ B(AP ® Ag). (11)

Theorem 3.3 Suppose that the eigendecomposition of the
matrices Ap and Ag are A=V, A, VI r € {PQ},
where Ap=diag{uo,...,upr—1}, Ag=diag{no,...,ng-1}-
If we denoted V=Vp®Vg, then the characteris-
tics(frequency components) of Gg are the columns of V.
The frequencies of Gg are then given by aC + SK.

Proof. Since Vp and V¢ are orthogonal matrices, we
have VpVE=E, VQngE. And by using the properties
of Kronecker product: (A ® B)(C ® D)=AC ® BD and
AT @ BT=(A ® B)T, we have:

Ag=a(Ap@Ig+Ip®Ag)+ (AP ®Ag)
a(VpApVE) ® (VQIQV%)

+a(VpIpVE) @ (VoAQV)) 12)

+B(VpAPVE) @ (VoAQVY)

=aVCVT + pgVKVT

= V]aC + BK]VT.
WhereC:AP®IQ+IP®AQ,K:AP®AQ. |

From Theorem 3.3 and (12), it is clear that the graph
frequency components of the weighted strong product
graph Gg is the same as that of the three product graphs.

Finally, we consider how to determine the weights
«a and 8 of the weighted strong product with minimal
frequency equilibrium according to its eigenvalue matrix



(aC+ BK)eRP*Q. Letting Z = aC + BK in Definition 1,
we then solve the following weighting minimization model.

r(rxliﬁn |a|Cs — Ci| — di1||% + ||a|Cy — Ca| — dol ||

+BIKs — Ki| = dil|[f + [|6]Ks — Ka| = da1]E,

where di= |max((?)+max(};((22—:r11i)n(0)—min(K)| and
do= |max(C)+max(K)—min(C)—min(K)| ’ and the matrices

P—1
Cl, CQ, Cg and( C4)§2K1, KQ, K3 and K4) are obtained
by deleting the last column, the last row, the first column
and the first row of C (K), respectively.

Problem (13) is an unconstrained quadratic problem
and can thus be solved directly using standard optimiza-
tion methods. It is important to note that the optimal
weighting parameters « and S may be negative, which
could result in negative edge weights in the adjacency ma-
trix. In cases where edge weights are required to be posi-
tive, our weighting model can be adjusted accordingly. We
will focus on developing constrained models for real-world
applications in our future work.

4 Experiment

In this section, we present experimental results to show
the frequency equilibrium of the weighted strong product
graphs, and compare with the original product graphs.

Consider the product of two factor graphs Gp and Gg
generated by unweighted Erdos-Rényi random graphs. We
calculate the frequency equilibrium Fo, Fyand Fg of the
Cartesian, Kronecker and strong product graphs, respec-
tively.

TABLE 1. Frequency equilibrium of product

graphs
Fo F« Fx Fg
P=10,Q = 10 134.799 367.765 506.394  19.215
P=15Q =15 200.446  791.359  989.384  18.535
P=25Q=25 923.951 6246.816 7162.900 19.148

The sparsity of random graphs is determined by a pa-
rameter p € [0, 1]. In our experiments, we generate a dense
factor graph Gp with p = 0.8 and a sparse factor graph Gg
with p = 0.3. We then calculate the graph frequency equi-
librium of the product of Gp and Gg with varying numbers
of nodes. As can be seen in Table 1, the proposed weighted
strong product exhibits the smallest frequency equilibrium

Strong product graph Strong product graph

Weighted Strong product gra

Weighted Strong product graph Weighted Strong product grapl

(a) (b) (c)
FIGURE 1. The eigenvalue matrix color-maps of
the strong and weighted strong product of ran-
dom factor graphs. (a) P = 10,Q = 10. (b)
P=15Q =15.(c) P =25,Q = 25.

compared to other products. Additionally, our weighting
model results in more closely distributed eigenvalues, sta-
bilizing the frequency equilibrium of the weighted strong
products around 20. In contrast, the frequency equilib-
rium of other products increases sharply with more nodes.
Although the frequency equilibrium of Cartesian product
graphs is smaller than that of Kronecker and strong prod-
ucts, their larger eigenvalue magnitudes still make it sig-
nificantly higher than that of the proposed weighted prod-
uct.

To visually illustrate the variation in the frequency
gathering phenomenon due to differing nodes, Figure
1 presents the eigenvalue matrix color-maps of S and
aC+ SK of the strong and weighted strong products listed
in Table 1. As can be seen in the first row of Figure 1, the
color map of each strong product eigen-matrix predomi-
nantly features blue, indicating that the eigenvalues clus-
ter around the high frequency band (colored in blue). In
contrast, the eigenvalue matrix color-maps of the weighted
strong product graphs, as displayed in the second row of
Figure 1, shows a more uniform distribution of colors, with
no dominant color observed. This demonstrates that the
proposed weighted strong product and weighting model
effectively alleviate the frequency gathering problem.

5 Conclusion

In this paper, we provide a theoretical analysis of the
frequency gathering problem in product graphs. To ad-
dress this issue, we introduce the concept of frequency



equilibrium to quantify the severity of frequency gath-
ering. We then present the definition of the weighted
strong product and formulate a weighting minimization
model based on frequency equilibrium to determine the
optimal weights for this product. Experimental results
demonstrate that the proposed weighted strong product
graphs achieves better and more stable frequency equilib-
rium compared to other product graphs.
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