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Abstract:
This research proposes a more general framework for

controlling the search points of JADE using a sigmoid
function in optimization problems with a limited number
of searches. The proposed method integrates effective
conditions from previous studies with a flexible reduction
scheme that adapts to search progress. Its key feature
is continuous population size control based on generation
progress, ensuring a balance between exploration and exploita-
tion. Experiments on 16 benchmark functions demonstrate
improved performance over conventional JADE in both 2D
and 10D problems, particularly under limited numbers of
function evaluations. This generalized approach enhances
optimization efficiency by dynamically adjusting the num-
ber of search points to suit different problem characteristics.
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1. Introduction

In real-world optimization problems, it is often diffi-
cult to derive general equations that directly yield solu-
tions. Therefore, optimization algorithms that seek near-
optimal solutions through multiple trials are widely used,
and among them, Differential Evolution (DE) has gar-
nered particular attention due to its efficiency and sim-
plicity of implementation [1], [2].

The population size of search points is an important
parameter that determines the performance of differential
evolution algorithms. A large population size improves the
global search capability but increases the computational
cost, while a small population size improves the efficiency
of local search but is prone to local solutions. In par-
ticular, in real problems using computationally expensive
evaluation functions, such as the finite element method,

the number of available function evaluations may be lim-
ited to 50 to 100 times, making it important to control the
number of efficient search points [3], [4]. Under these con-
straints, methods to dynamically control the population
size as the search progresses have been studied [5].

Previous research proposed introducing three effective
conditions for controlling population size into JADE [6].
Specifically, these conditions are triggered when i) the so-
lution. the solution update success rate exceeds a thresh-
old (0.3), ii) the population the population size is larger
than the problem dimension plus one, and iii) the cur-
rent generation number exceeds the value obtained by sub-
tracting the population size from the maximum number of
generations. These control conditions have achieved im-
proved solution accuracy in the latter stages of the search.

However, the generation-based control in this method
still has potential for extension into a more general frame-
work. The control is based on a discrete scheme with
simple threshold judgments, making it difficult to flexibly
adapt to problem characteristics and search situations. In
particular, there is a need for continuous control mech-
anisms that respond to search progress and consider the
scale of the maximum number of generations.

This research extends the control method proposed in
previous studies into a more general framework. Specifi-
cally, we introduce a continuous control mechanism based
on the sigmoid function, combining it with the ”solution
update success rate” and ”population size” conditions that
have proven effective in previous research [7]. This en-
ables flexible population size control that adapts to prob-
lem characteristics and search situations.

The proposed method constructs a more general frame-
work for population size control by utilizing the character-
istics of the sigmoid function [8]. Through adaptive con-
trol based on search progress, it maintains sufficient popu-
lation size in the early stages of search while efficiently ad-



justing the population size as the search progresses. This
generalized control mechanism is expected to enable flex-
ible application to various optimization problems.

2. Background: Differential Evolution and JADE

Differential Evolution is a distinctive method that gen-
erates new search points using differential information be-
tween individuals and is widely used as a direct search
method that does not require gradient information. It en-
ables fast and high-precision search for nonlinear and mul-
timodal problems using evolutionary operations like mu-
tation, crossover, and selection [9]. DE has been improved
in various ways, such as adding random perturbations to
search points and introducing statistical methods. Main-
taining balance between population diversity and accuracy
is important in its improvement [10], [11], [12].

Search points are updated through mutation us-
ing difference vectors. A representative strategy is
DE/rand/1/bin, where ’rand’ indicates a random base vec-
tor, ’1’ the number of difference vectors, and ’bin’ bino-
mial crossover. This strategy generates a mutation vector
as follows:

vi = xr1 + F · (xr2 − xr3) (1)

where xr1, xr2, xr3 are distinct individuals randomly se-
lected from the population, and F is the mutation factor.
The use of these difference vectors enables efficient explo-
ration by utilizing the local structure of the search space.

In the subsequent crossover operation, genetic informa-
tion is exchanged between the mutation vector and the
current solution. In binomial crossover, trial vectors are
generated according to the following equation:

ui,j =

{
vi,j , if rand ≤ CR or j = jrand

xi,j , otherwise
(2)

where CR is the crossover rate, rand is a uniform random
number in [0,1], and jrand is a randomly selected dimen-
sion. This operation maintains diversity in the search.

Finally, in the selection operation, the trial vector is
compared with the current solution, and the better solu-
tion is retained for the next generation:

xnew
i =

{
ui if f(ui) < f(xi)

xi otherwise
(3)

The performance of Differential Evolution depends
heavily on the mutation factor F and the crossover rate

CR, whose optimal values vary across problems and search
stages. As a result, fixed parameter settings can reduce
search efficiency. To address this, methods such as jDE
[13] have introduced self-adaptive control, allowing indi-
viduals to adjust parameters during evolution. Population
size also plays a critical role in balancing global and local
search, and the effective control of these parameters re-
mains a central challenge in DE research.

Many variants of DE have been developed to improve
its performance. One notable example is JADE, which in-
troduced adaptive parameter control and a new mutation
strategy. In JADE, the mutation strategy ”DE/current-
to-pbest” uses the current individual and a randomly se-
lected individual from the top p% best solutions to en-
hance convergence:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − xr2,g) (4)

Here, g denotes the generation number, indicating that
all variables are updated each generation. In particular,
xp
best,g is selected from the top p% solutions in generation

g.
JADE also generates the control parameters Fi and CRi

from probability distributions and updates them based on
successful trials. These mechanisms improve performance
by adapting to the problem and search progress. How-
ever, like standard DE, JADE maintains a fixed popula-
tion size throughout the search, which may limit flexibility
in problems with a limited number of function evaluations.
This motivates our proposed approach, which introduces
a dynamic population control mechanism into the JADE
framework.

3 Proposed method

This research proposes a new approach that extends
the population size control method from previous studies
into a more general framework, applying a flexible deletion
schedule using the sigmoid function. Based on JADE, we
introduce a population reduction mechanism that enables
flexible and adaptive adjustment of population size accord-
ing to search progress. This method supports efficient and
stable search by providing control suited to problem char-
acteristics and search situations. This method is applica-
ble to many DE systems. However, in the case of optimiza-
tion with a small number of generations, there is no signif-
icant difference in performance between recent methods.
Therefore, JADE was adopted as a baseline. Furthermore,
since practical application is emphasized, careful attention



to convergence is necessary when the method is used in
real-world scenarios requiring convergence.

In population size reduction, control is performed ac-
cording to search progress using the sigmoid function.
Specifically, we calculate the search progress as a normal-
ized value and input this to the sigmoid function to adjust
the population size. The normalized progress is expressed
by the following equation:

γ =
I −MAXITER

MAXITER
(5)

where I represents the current generation number and
MAXITER denotes the maximum number of genera-
tions. This enables population size reduction according
to search progress.

In population size control, adaptive control based on
search progress is crucial. This research proposes a control
mechanism that determines population size reduction by
comparing a control value controlValue with the squared
generation number I to maximize search efficiency. The
control value controlValue is defined by the following equa-
tion:

controlValue = MAXITER

√
exp (−α · γ)

1 + exp (−α · γ)
(6)

This equation enables maintaining high population size
in the early stages while efficiently reducing population
size in the later stages. The slope of the sigmoid function
(steepness: α) is adjusted based on the maximum num-
ber of generations (MAXITER), realizing flexible control
adapted to search progress. We defined α as follow:

α =
MAXITER

10
(7)

Proposed method was adopted as the criterion based
on extensive preliminary experiments across various test
cases. Through numerous trials with different dimension-
alities and function types, we observed that this function
effectively aligns with the convergence characteristics of
the search process. This control rule demonstrated the
ability to maintain sufficient population size in early stages
while promoting appropriate reduction as the search pro-
gresses. This control mechanism enables adaptive adjust-
ment of population size according to search progress, fa-
cilitating efficient search. In particular, it significantly
contributes to improving the efficiency of local search in
the later stages of exploration.

In this research, we generalized the population size con-
trol method proposed in previous research [5] and achieved
a balance between search efficiency and solution diversity
by combining multiple control conditions that consider so-
lution update success rate and problem dimensionality.

A threshold parameter θ for the solution update rate
plays a key role in controlling population size reduction.
Through preliminary experiments across various bench-
mark problems, we determined that values in the range
θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7} provide effective control over
the population reduction process. A lower threshold al-
lows more aggressive population reduction when the solu-
tion update rate exceeds this value, while a higher thresh-
old maintains population diversity longer by requiring a
higher success rate for reduction. The steps of the pro-
posed method are described below.

Step 1 Population Generation:
Generate N initial individuals {xi, i = 1, 2, . . . , N}
randomly in the search space.

Step 2 Exploration in Each Generation:
If the number of searches exceeds the maximum
search count (SEARCHMAX), terminate the algo-
rithm. Repeat the following as long as the conditions
are satisfied.

2-1 Generation of Next Search Point Population:
Substitute JADE equations.

2-2 Selection of Fitter Individuals:
If the specified number of searches is reached,
end Step 2.

2-3 Parameter Update:
• Crossover rate: CR

• Mutation factor: F

• Update rate: rate =
total improved offspring

N
• Equation (5)
• Equation (6)

2-4 Search Point Control:
• rate > θ

• N > Dimension + 1

• I > ControlValue
When all of the above conditions are met, ex-
clude the individual with the worst evaluation
from the population.

Step 3 Output of Solutions:
The final solution is the minimum (or maximum)
value among the stored individuals.



4. Numerical experiments, results and discussion

In this research, the conventional JADE and the pro-
posed method are applied to a total of 16 benchmark func-
tions, consisting of four representative unimodal functions
(F1: Sphere, F2: Rosenbrock, F3: Booth, F4: Matyas)
and twelve multimodal functions (F5: Easom, F6: Ras-
trigin, F7: Ackley, F8: Levi N.13, F9: Bukin N.6, F10:
Beale, F11: Goldstein-Price, F12: Schaffer N.2, F13: Five-
well Potential, F14: Griewank, F15: Xin-She Yang, F16:
Styblinski-Tang), in order to compare the solution accu-
racy of both approaches.

We discuss the experimental results presented in TA-
BLE 1 to 6. In each table, results that outperform JADE
are underlined, and the best solutions are highlighted in
bold. For all experiments, the population size was set to
N = D × 5. The number of generations and runs was
determined based on the dimensionality and the experi-
mental setting (e.g., 10, 20, or 40 generations; 100 to 2000
runs).

TABLE 1. Performance comparison with optimal parameters
(100 iterations, 10 generations, D = 2)

JADE θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

Single-peak

F1 0.00087296 0.00078569 0.00084819 0.00077269 0.00078201 0.00072214
F2 0.94626 0.88261 0.89707 0.92400 0.91501 0.88135
F3 0.63981 0.61400 0.63797 0.58076 0.51937 0.53000
F4 0.023978 0.02186 0.021872 0.022326 0.020656 0.019124

Multi-peak

F5 -0.0054949 -0.013344 -0.010755 -0.01053 -0.0095933 -0.0095933
F6 2.5622 2.4161 2.5390 2.4547 2.4502 2.4248
F7 3.9286 3.8715 3.8291 3.7562 3.6922 3.6312
F8 0.37762 0.38281 0.38920 0.37727 0.33756 0.34130
F9 7.8385 7.7533 7.5043 7.4315 7.4979 7.5933
F10 0.36521 0.32002 0.34463 0.34628 0.36562 0.35698
F11 12.2973 11.7883 11.8399 11.7573 11.2228 11.2616
F12 0.15404 0.15252 0.14786 0.14587 0.14814 0.15217
F13 -0.70707 -0.69708 -0.69450 -0.69535 -0.71330 -0.71677
F14 1.0786 1.0709 1.0750 1.0695 1.0708 1.0638
F15 0.27916 0.25990 0.26127 0.26168 0.26526 0.26057
F16 -74.6379 -74.9704 -75.2733 -74.9310 -75.2484 -75.1211

better than JADE - 14 14 15 15 16
equal to JADE - 0 0 0 0 0
worse than JADE - 2 2 1 1 0
sign test result - p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

The experimental results for two-dimensional problems
(TABLE 1 to TABLE 3) demonstrate the basic perfor-
mance of the proposed method. In the experiment with 10
generations (TABLE 1), performance improvements were
confirmed in all 16 functions with θ = 0.7 (p < 0.01),
particularly in Multi-peak functions. The timing of pop-
ulation reduction is appropriately scaled according to the
maximum number of generations, achieving control based
on search progress. In the experiment with increased
maximum generations to 20 (TABLE 2), performance im-
provements were achieved in all functions with settings of
θ = 0.3 and θ = 0.4(p < 0.01), with notable enhancement

TABLE 2. Performance comparison with optimal parameters
(200 iterations, 20 generations, D = 2)

JADE θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

Single-peak

F1 7.3802e-06 7.138e-06 6.0563e-06 5.388e-06 3.9191e-06 2.7743e-06
F2 0.27507 0.2631 0.23266 0.24168 0.23846 0.22239
F3 0.028155 0.020201 0.017325 0.014223 0.011685 0.009116
F4 0.0016522 0.00099005 0.00078596 0.00077748 0.00064955 0.00062488

Multi-peak

F5 -0.045226 -0.067886 -0.081336 -0.095551 -0.10013 -0.10181
F6 0.89963 0.77105 0.72922 0.73409 0.70904 0.73663
F7 0.60466 0.56613 0.49686 0.47627 0.38609 0.33865
F8 0.025428 0.023922 0.019985 0.017988 0.017298 0.0166
F9 3.3832 2.8645 2.9881 2.8627 2.8914 2.9305
F10 0.17347 0.15124 0.17034 0.15319 0.15727 0.14873
F11 5.9054 5.3349 5.0059 4.7613 5.5775 5.0199
F12 0.057067 0.046906 0.042911 0.044537 0.041879 0.043524
F13 -0.92641 -0.92697 -0.93604 -0.92353 -0.94116 -0.92444
F14 1.0005 1.0005 1.0005 1.0003 1.0006 1.0001
F15 0.14225 0.12187 0.12669 0.12281 0.11463 0.11188
F16 -76.9267 -77.0796 -77.0373 -77.0483 -76.828 -77.008

better than JADE - 16 16 15 14 15
equal to JADE - 0 0 0 0 0
worse than JADE - 0 0 1 2 1
sign test result - p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

TABLE 3. Performance comparison with optimal parameters
(400 iterations, 40 generations, D = 2)

JADE θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

Single-peak

F1 5.5773e-10 5.7429e-10 4.0729e-10 2.2349e-10 2.1192e-10 2.2627e-10
F2 0.085524 0.076789 0.067863 0.073647 0.075084 0.074041
F3 0.00023626 2.4574e-05 1.2992e-05 1.5972e-05 1.3077e-05 2.4903e-05
F4 5.8261e-06 4.3085e-06 1.2128e-06 2.0266e-06 2.1427e-06 2.213e-06

Multi-peak

F5 -0.29707 -0.62509 -0.63926 -0.60446 -0.60353 -0.58347
F6 0.10815 0.08123 0.086067 0.07736 0.070655 0.094865
F7 0.0084086 0.0076342 0.007364 0.0041768 0.0037827 0.0040005
F8 0.0010705 0.0010039 0.00089415 0.00067405 0.00047806 0.00078329
F9 1.283 1.0115 1.0055 0.99243 0.97903 0.96135
F10 0.12702 0.12803 0.10708 0.1047 0.10907 0.12328
F11 4.9952 4.65 4.3249 4.4342 4.5136 4.9187
F12 0.0092067 0.0071333 0.0075968 0.006941 0.0068909 0.0067043
F13 -0.97778 -0.97473 -0.98112 -0.97756 -0.99058 -0.97779
F14 0.99975 0.99975 0.99975 0.99975 0.99975 0.99975
F15 0.043631 0.036161 0.032631 0.036221 0.036648 0.031902
F16 -77.2292 -77.2902 -77.2721 -77.2155 -76.9469 -77.3144

better than JADE - 12 15 14 15 16
equal to JADE - 0 0 0 0 0
worse than JADE - 4 1 2 1 0
sign test result - p < 0.05 p < 0.01 p < 0.01 p < 0.01 p < 0.01



in Single-peak functions compared to the 10-generation
case.

TABLE 4. Performance comparison with optimal parameters
(500 iterations, 10 generations, D = 10

JADE θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

Single-peak F1 0.2532 0.2457 0.25287 0.2479 0.2439 0.24823
F2 1273.4221 1242.5313 1273.6702 1250.5037 1224.0291 1239.3632

Multi-peak

F6 64.9101 65.253 64.809 65.0547 65.0732 64.8208
F7 14.8182 14.8134 14.7814 14.7164 14.7307 14.6935
F14 23.7877 23.1131 23.7587 23.3113 22.9511 23.3409
F15 0.015952 0.015893 0.016391 0.015718 0.015718 0.015718
F16 -277.2216 -275.4908 -276.1529 -275.2414 -275.2414 -275.2414

better than JADE - 5 4 5 5 6
equal to JADE - 0 0 0 0 0
worse than JADE - 2 3 2 2 1
sign test result - p < 0.3 p < 0.5000 p < 0.3 p = 0.2266 p = 0.0625

TABLE 5. Performance comparison with optimal parameters
(1000 iterations, 20 generations, D = 10)

JADE θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

Single-peak F1 0.048384 0.050119 0.049786 0.047966 0.046336 0.04613
F2 189.8659 185.8044 184.1023 179.8713 175.9344 176.3578

Multi-peak

F6 47.1463 47.2088 47.0388 46.9733 46.9733 46.9733
F7 9.5015 9.562 9.6123 9.4389 9.4159 9.3581
F14 5.3546 5.5107 5.4807 5.3169 5.1703 5.1517
F15 0.0079815 0.0079729 0.0079115 0.0079115 0.0079115 0.0079115
F16 -306.0463 -306.5388 -306.307 -305.8934 -305.8934 -305.8934

better than JADE - 3 4 6 6 6
equal to JADE - 0 0 0 0 0
worse than JADE - 4 3 1 1 1
sign test result - p < 0.5000 p < 0.5000 < 0.1 p < 0.1 p < 0.1

TABLE 6. Performance comparison with optimal parameters
(2000 iterations, 40 generations, D = 10)

JADE θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

Single-peak F1 0.0022816 0.0022621 0.0022868 0.0021285 0.0019929 0.0020055
F2 18.6844 17.7435 16.8862 15.7372 16.484 16.2504

Multi-peak

F6 32.49 31.9522 31.8902 31.8902 31.8902 31.8902
F7 3.774 3.7454 3.716 3.6519 3.6002 3.5882
F14 1.2053 1.2036 1.2071 1.1887 1.1796 1.1805
F15 0.0043033 0.0042164 0.0042164 0.0042164 0.0042164 0.0042164
F16 -346.7529 -348.0947 -348.7955 -348.8092 -348.9026 -348.9026

better than JADE - 7 5 7 7 7
equal to JADE - 0 0 0 0 0
worse than JADE - 0 2 0 0 0
sign test result - p < 0.01 p < 0.3 p < 0.01 p < 0.01 p < 0.01



100 iterations (10 generations) 200 iterations (20 generations) 400 iterations (40 generations)

FIGURE 1. Detailed Analysis of Final Convergence Results by Generation in 2D Space (F6:Multi-peak)

500 iterations (10 generations) 1000 iterations (20 generations) 2000 iterations (40 generations)

FIGURE 2. Detailed Analysis of Final Convergence Results by Generation in 10D Space (F6:Multi-peak)

The experimental results for two-dimensional problems
(TABLE 1 to TABLE 3) demonstrate the basic perfor-
mance of the proposed method. For 10 generations (TA-
BLE 1), performance improvements over JADE were ob-
served in all 16 functions with θ = 0.7 (p < 0.01), par-
ticularly for Multi-peak functions. The timing of popula-
tion reduction was appropriately scaled to the maximum
number of generations, ensuring control based on search
progress. With 20 generations (TABLE 2), all functions
showed improvements over JADE at θ = 0.3 and θ = 0.4
(p < 0.01), with particularly notable gains in Single-peak
functions compared to the 10-generation case.

To better understand the previous quantitative results,
we visualized the transition of function values during the
final stages of the search for representative functions. Fig-
ures 1 and 2 show the changes in function values during
the final stages of the search for the Multi-peak function
(F6: Rastrigin) in 2D and 10D. Although the convergence
behavior varies depending on the setting of the parameter
θ, performance equal to or better than that of JADE was
visually confirmed.

The influence of the control parameter θ showed dif-
ferent trends depending on problem characteristics. Two-
dimensional problems tended to show better results with
relatively high θ values (0.6− 0.7), while ten-dimensional
problems showed better results with moderate θ values
(0.5− 0.6). This difference is thought to reflect the vary-
ing search characteristics due to the dimensionality of
the search space. The performance improvement in high-
dimensional problems particularly suggests that efficient
control of population size functions effectively against the
expansion of the search space.

These results demonstrate the effectiveness of the con-
tinuous control of the number of search points by the sig-
moid function. In particular, the reduction timing changes
according to the maximum number of generations, which
results in a stable performance improvement according to
the progression level and confirms its versatility for a wide
range of problems.

Based on these experimental results, key features of
the proposed method include flexible adjustment of search
points using a sigmoid function, adaptive control of re-



duction timing based on the maximum generations, and
broad applicability through generalization. In particu-
lar, the reduction timing is appropriately scaled with the
maximum generations, enabling efficient search based on
progress. This control mechanism demonstrated perfor-
mance improvements, regardless of problem dimensional-
ity or search space characteristics.

5. Conclusions

In this research, we proposed a continuous control mech-
anism based on the sigmoid function to generalize popu-
lation size control in Differential Evolution. Compared
to conventional discrete control methods, this approach
achieves more flexible adjustment of population size ac-
cording to search progress. In particular, the introduction
of the control parameter θ enabled adaptive control based
on problem characteristics.

Experimental evaluation demonstrated the effectiveness
of the proposed method in both two-dimensional and ten-
dimensional optimization problems. In two-dimensional
problems, performance improvements were widely con-
firmed across 16 benchmark functions, with particularly
significant improvements in Multi-peak functions. Simi-
larly, stable performance improvements were achieved in
ten-dimensional problems, demonstrating the versatility
of the proposed method.

The continuous control using the sigmoid function en-
abled smooth adjustment of population size from the ini-
tial stage to the final stage of search, achieving efficient
exploration. This feature proved to be particularly ad-
vantageous in problems with multiple local optima.

Future challenges include application to higher-
dimensional problems and development of automatic ad-
justment mechanisms for control parameters, through
which further development of the proposed method is ex-
pected.

Acknowledgements

This work was supported by JSPF KAKENHI Grant
Numbers JP18K11473, 22K12182.

References

[1] R. Storn and K. Price, “Differential evolution - a sim-
ple and efficient heuristic for global optimization over

continuous spaces,” Journal of Global Optimization,
Vol. 4, pp. 341–359, 1997.

[2] R. Storn and K. Price, “Differential evolution - a
simple and efficient heuristic for global optimization
over continuous spaces,” Technical Report, TR-95-
012, ICSI, 1995.

[3] S. Maeda, T. Kato, K. Ikushima, and M. Shiba-
hara, “Prediction of welding deformation of large-
scale structure using inherent deformation computed
by using machine learning,” 13th International Sem-
inar on Numerical Analysis of Weldability, 2023.

[4] Osaka Metropolitan University,
Shibahara Laboratory. Available:
https://www.omu.ac.jp/eng/shibahara/

[5] T. Matsuki, A. Notsu, K. Honda, T. Kato, and M.
Shibahara, “Control of JADE population in limited
number of searches for realistic situations,” Proceed-
ings of the 2024 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8, 2024.

[6] J. Zhang and A. C. Sanderson, “JADE: Adaptive dif-
ferential evolution with optional external archive,”
IEEE Transactions on Evolutionary Computation,
Vol. 13, No. 5, pp. 945–958, 2009.

[7] C. M. Bishop, Pattern Recognition and Machine
Learning, Springer, 2006.

[8] D. Hush and B. Horne, “Progress in supervised neu-
ral networks,” IEEE Signal Processing Magazine, Vol.
10, No. 1, pp. 8–39, Jan. 1993.

[9] M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M.
Ang, “Differential evolution: A recent review based
on state-of-the-art works,” Alexandria Engineering
Journal, Vol. 61, Issue 5, pp. 3831–3872, May 2022.

[10] A. Notsu, M. Sakakibara, S. Ubukata, and K. Honda,
“Setting of candidate solutions considering confidence
intervals in differential evolution,” Proceedings of the
2018 International Conference on Fuzzy Theory and
Its Applications, pp. 7–11, 2018.

[11] A. Notsu, J. Tsubamoto, Y. Miyahira, S. Ubukata,
and K. Honda, “Randomness selection in differential
evolution using Thompson sampling,” Proceedings of
the 2020 Joint 11th International Conference on Soft



Computing and Intelligent Systems and 21st Interna-
tional Symposium on Advanced Intelligent Systems,
pp. 1–5, 2020.

[12] J. Cheng, Z. Pan, H. Liang, Z. Gao, and J. Gao, “Dif-
ferential evolution algorithm with fitness and diver-
sity ranking-based mutation operator,” Swarm and
Evolutionary Computation, Vol. 61, 2021.

[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V.
Zumer, “Self-adapting control parameters in differ-
ential evolution: a comparative study on numerical
benchmark problems,” IEEE Transactions on Evolu-
tionary Computation, Vol. 10, No. 6, pp. 646–657,
2006.


