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Abstract: 
Understanding the nuances of language is fundamental to 

natural language processing (NLP) applications. The challenge 
of polysemy –ere a single word can carry multiple meanings 
depending on the context, continues to hinder progress in 
areas such as machine translation, sentiment analysis and 
question-answering. Despite it being a necessity to gain further 
advancement in these applications, minimal research has been 
conducted on how different models approach this problem. Find- 
ing the best fit for the polysemy involves taking into account the 
computational and practical qualifications of the models as well. 
In this paper, we implemented five models –BERT, RoBERTa, 
AutoSense, Sense2Vec and ELMo to gauge their performance 
and determine the best-suited model. Our results demonstrate 
that context-aware models like BERT and RoBERTa outperform 
static-embedding-based models like AutoSense and Sense2Vec. 
This research not only fills a critical void in the literature but also 
sets the stage for future innovations in semantic understanding, 
making polysemy detection a central focus for advancing NLP. 
Keywords: 
 

Polysemy detection, BERT, RoBERTa, ELMo, Sense2Vec, Au- 
toSense, Natural Language Processing. 

 
1. Introduction 
 

Polysemy detection focuses on identifying and interpreting 
words with multiple meanings based on contextual usage. As 
a linguistic phenomenon, polysemy adds richness to language 
but poses significant challenges for computational systems, 
making it harder to accurately process and understand text[1]. 
This issue frequently arises in NLP tasks like machine transla- 

tion, information retrieval, and sentiment analysis, where pre- 
cise word sense disambiguation is crucial for success. 

For instance, semantic variations make it challenging to 
distinguish nuanced meanings such as cell in biology vs 
telecommunications[2]. Individual interpretation and con- 
textual ambiguity particularly in Named Entity Recognition 
(NER) aggravate these issues [3][4].Traditional dictionary defi- 
nitions fail to capture the fluidity of real-world usage [5], while 
blending multiple meanings into single vector representations 
reduces model accuracy and hinders tasks like event detection 
[6]. High annotation costs in specialized fields like biomedi- 
cal research further limit the availability of reliable polysemy 
datasets [4]. 

The integration of polysemy detection across various fields 
not only enhances accuracy and cultural sensitivity but also im- 
proves the overall effectiveness of communication and analy- 
sis in an increasingly complex and interconnected world. Ad- 
dressing these challenges requires robust solutions to advance 
polysemy detection. This paper implements and evaluates five 
models—BERT, RoBERTa, ELMo, Sense2Vec, and AutoSense 
using a base metric and a common training corpus, Senseval[7] 
—specifically for handling polysemy, establishing a definitive 
baseline for future research. While prior studies have compared 
these models on various aspects, the challenge of polysemy has 
not received sufficient attention. By focusing on this gap, this 
study aims to bridge the current understanding of polysemy in 
NLP with the critical advancements needed to enhance model 
performance. 

The findings in this paper demonstrate the shift from static 
word embeddings, such as those in Sense2Vec, to contextual 
embeddings in models like BERT and RoBERTa, which sig- 
nificantly improved the ability to resolve polysemy, as evi- 
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denced by our evaluation of the Senseval dataset, where BERT 
achieved a higher F1 score in distinguishing word senses. 
BERT and RoBERTa’s ability to learn word meanings from 

context outperforms Sense2Vec’s static multi-sense embed- 
dings, achieving a more accurate representation of polysemous 
terms by leveraging dynamic, context-aware embeddings. The 
flexibility of BERT and RoBERTa models, combined with their 
ability to be fine-tuned for a variety of NLP tasks, allows for 
more precise polysemy detection in complex and evolving lan- 
guage contexts, outperforming traditional static models. 
 
2 Literature Review 
 

Numerous papers compare multiple models on various other 
dimensions such as text classification, machine translation etc. 
along with studies that explore the polysemy handling of indi- 
vidual models. This section discusses the existing research on 
polysemy handling for each model independently. 
 
2.1 Traditional Models 
 

WordNet’s ambiguity and computational overhead in word 

sense disambiguation (WSD) of polysemous words have been 
critiqued, with a new model being proposed to address these 
limitations. This model introduces clue words to organize pol- 
ysemous words more effectively. 
 
2.2 Static-Embedding Based Models 
 

Sense2Vec addresses the challenge of polysemy in neural 
word embeddings by disambiguating word senses into sepa- 
rate embeddings [12]. This method uses supervised labels for 
clustering word senses based on their context, reducing com- 
putational overhead and improving word-sense modelling. Key 
findings include disambiguation of word senses by parts of 
speech, the distinction between positive and negative sense vec- 
tors, and improved accuracy in syntactic dependency parsing. 
Related works include Word2Vec [13], Wang2Vec [14], and the 
Multi-Prototype Vector-Space Model [15]. 
 
2.3 Context-Based Models 
 

A. Gar´ı Soler et. al [8] in their study presented how BERT 
and ELMo differentiate between monosemous and polysemous 
words in English and examined whether these models encode 
information about lexical polysemy and sense distributions. 
Using the Usim task, which predicts word similarity in con- 
text without sense annotations, the study classifies polysemous 

words into three bands (poly-same, poly-rand, and poly-bal) 
and evaluates them with the SelfSim score. The results show 
that as the number of senses increases, the SelfSim score de- 
creases. BERT outperforms ELMo, particularly in predicting 
polysemy levels and word clusterability. The findings sug- 
gest that semantic information is distributed across BERT and 
ELMo layers, with higher disambiguation layers yielding bet- 
ter predictions. Relevant related work includes BERT’s word 

sense disambiguation [9] [10] and studies on lexical polysemy 
in static embeddings [11]. 
 
2.4 Domain Specific Applications 
 

J. A. Lossio-Ventura et. al [16] found a method to detect pol- 
ysemy in biomedical terms using new features extracted from 
textual datasets and an induced co-occurrence graph. The ap- 
proach uses two dictionaries to distinguish term usage across 
domains (biomedical and agronomy) and employs statistical 
measures to extract features. A multilayer perceptron algorithm 
shows the best performance for feature mixing. The method is 
effective for polysemy prediction, evaluated through accuracy, 
precision, recall, and F-measure. Related work includes ambi- 
guity detection [17] and polysemy in prepositions [18]. 

The research reveals a significant gap in research compar- 
ing the polysemy handling capabilities of multiple models di- 
rectly. Most studies either focus on individual models or prior- 
itize other aspects of language processing over polysemy. De- 
spite this, valuable insights have emerged from various model- 
specific investigations. BERT, in particular, has consistently 
demonstrated superior performance in encoding lexical poly- 
semy and disambiguating word senses, especially when com- 
pared to models like ELMo. Sense2Vec also offers an inno- 
vative approach by clustering word senses and reducing com- 
putational costs, further contributing to advancements in poly- 
semy handling. While traditional methods like WordNet-based 
WSD have faced critiques for their complexity and inefficiency, 
newer algorithms introducing clue words offer promising im- 
provements. Transformer models, especially RoBERTa, con- 
tinue to dominate in related tasks, proving their flexibility and 
effectiveness across different NLP challenges. 
 
3 Experimental Setup 
 

To establish the experimental setup, existing model features 
were evaluated for utility, and necessary modifications were 
identified. 

The experiments were conducted in either the Kaggle or 
Google Colab environment, leveraging an NVIDIA T4 GPU 



 
 
 

 
TABLE 1. Comparison of Models for Word Sense Disambiguation 

 
Model Advantages Disadvantages 
BERT (Base, Un- 
cased) 

• Strong contextual understanding. 
• Pretrained on large corpora. 

• High inference cost. 
• Quadratic time complexity. 

RoBERTa (Base) • Improved BERT variant. 
• Robust predictions, better long-range handling. 

• High computational demand. 
• Resource-intensive. 

Sense2Vec • Fast disambiguation. 
• Sense-specific embeddings. 

• No context handling. 
• Weak on long/complex sequences. 

ELMo (Logistic Re- 
gression) 

• Lightweight and fast. 
• Easy to train. 

• Lower accuracy. 
• Instability on complex data. 

ELMo (LSTM) • Rich embeddings. 
• Good with local dependencies. 

• Overfitting risk. 
• Slow training, struggles with long text. 

AutoSense 
(KMeans) 

• Strong unsupervised WSD. 
• Stable, minimal overfitting. 

• High tuning complexity. 
• Sensitive to parameters. 

 
accelerator, with Python v3 as the programming language. 
The Senseval dataset, consisting of multiple .pos files, was 
used for this task. These files were parsed using Python’s 

xml.etree.ElementTree module. The preprocessing phase in- 
volved extracting sentences and their corresponding labels, fol- 
lowed by exploratory data analysis (EDA) to visualize the dis- 
tribution of labels and sentence lengths 

The Senseval dataset was then used for implementation, 
with results plotted and tabulated to assess performance. 
This dataset is a benchmark for Word Sense Disambiguation 
(WSD) tasks, consisting of .pos files for ambiguous words like 
hard,interest,line and serve. Senseval is considered due to its 
lexical resource alignment and task relevance as well. Each file 
contains sentences labeled with sense identifiers (e.g., line1, 
line2), representing distinct meanings as defined by lexical re- 
sources like WordNet. 

Each model was evaluated on metrics like F1 score, accu- 
racy, recall and precision. Loss curves were plotted for better 
visualization of performance. 

The following section provides a comprehensive summary of 
all libraries, modules, imports, tools, and additional packages 
utilized throughout the experiments, including optimizers and 
learning rate schedulers. 
 
3.1 BERT 

• Training epochs- 10 

• Batch size- 16 

The sentences were tokenized using the BERT tokenizer with 
labels encoded as integers. The pre-trained BERT model for 
sequence classification was fine-tuned. Early stopping with pa- 
tience was incorporated to prevent overfitting, and a custom 
learning rate scheduler was dynamically adjusted the learning 
rate during training. 

Both training and validation loss/accuracy over epochs was 
tracked. After training, the model was evaluated using the val- 
idation set, and classification reports were generated. A confu- 
sion matrix was also plotted to analyze incorrect classifications 
across different classes. Finally, the model and tokenizer were 
saved for future inference. 

 

BERT (Bidirectional Encoder Representations from Trans- 
formers), specifically the bert-base-uncased variant was imple- 
mented with the following specifications. 

• Dataset Split Ratio- 80:10:10 

• Optimizer- AdamW with learning rate scheduler 

 
 
 
 
3.2 RoBERTa 

 
 
FIGURE 1. BERT 

 
• Pateince- 3 epochs 

RoBERTa (Robustly Optimized BERT Pretraining Ap- 
proach), specifically the roberta-base variant was implemented 



 
 
 
with the following specifications. 

• Dataset Split Ratio- 80:10:10 

• Optimizer- AdamW with learning rate scheduler 

• Pateince- 3 epochs 

• Training epochs- 10 

• Batch size- 16 

Tokenization of sentences was performed using the 
RoBERTa tokenizer, which preserved the subword embeddings 
while ensuring compatibility with the RoBERTa model’s vo- 
cabulary. 

The RoBERTaForSequenceClassification model was fine- 
tuned for this classification task. To mitigate overfitting, early 
stopping was implemented. 

While training the model, both training and validation 
loss/accuracy metrics were tracked. After the training phase, 
the model was evaluated on the test set and classification re- 
ports were generated. Additionally, a confusion matrix was 
plotted to analyze model performance. 

To validate the effectiveness of the model, learning curves 
(training and validation loss/accuracy) were visualized to con- 
firm convergence and generalization. The trained RoBERTa 
model and tokenizer were saved for future inference tasks, en- 
suring reproducibility and utility for downstream applications. 
 

FIGURE 2. RoBERTa 
 
 
 
3.3 ELMo 
 

A word sense disambiguation (WSD) model using Embed- 
dings from Language Models (ELMo) was implemented with 

two distinct approaches: Logistic Regression and an LSTM- 
based neural network. A custom function was prepared to tok- 
enize each sentence from embedding generation into character 
IDs. 

The AllenNLP framework was used to generate context- 
aware ELMo embeddings. The pre-trained ELMo model was 
initialized using the options.json and lm weights.hdf5 files 
from the AllenNLP repository. 

Datasets were split in an 80-10-10 ratio and PyTorch datasets 
were created for efficient training and 2 pipelines were built. 
The first one used ELMo with logistic Regression by averaging 
ELMo embeddings over sentence lengths. These fixed length 
embeddings were then passed into a Logistic Regression Clas- 
sifier with hyper parameter tuning done. Model performance 
was evaluated using metrics like accuracy, precision, recall and 
F1 scores. 
 

FIGURE 3. ELMo(Logistic) 
 
 

 
FIGURE 4. ELMo(LSTM) 

 
The second pipeline had ELMo embeddings combined with 

an LSTM based neural network implemented in PyTorch. The 
LSTM model had 2 hidden layers and dropout regularization to 
prevent overfitting. Adam optimizer with a learning rate sched- 
uler was used to optimize the model. Early stopping with pa- 



 
 
 
tience of three epochs was used to halt training when validation 
loss showed no improvement. 

Metrics such as training and validation losses were tracked 
over epochs. After training, confusion matrices were plotted 
to visualize model performance across different sense labels, 
and the models were saved for future inference using pickle. A 
custom inference function was also created to allow predictions 
on new sentences by generating their ELMo embeddings and 
feeding them into the trained classifiers. 
 
3.4 Sense2Vec 
 

In this work, a machine learning pipeline was implemented 
for word sense disambiguation using the Senseval dataset and 
Sense2Vec embeddings. 

The Sense2Vec model was downloaded and loaded using the 
sense2vec package. Sentence tokenization and POS(Parts of 
Speech tagging) was done. Fixed-sized vectors representing 
features for classification were formed using word embeddings 
for each token averaged over each sentence. 

A Logistic Regression model was trained on these features 
for classification. The dataset split had 80-20 train-validation 
split and the performance was evaluated using metrics like ac- 
curacy, precision, recall, F1 scores and a confusion matrix. 

Different values of the regularization parameter C and vary- 
ing kernel types (linear,rbf,poly and gamma) values were also 
used. The better performing model among both the classifiers 
was selected. 

This pipeline demonstrates the application of Sense2Vec em- 
beddings for word sense disambiguation with logistic regres- 
sion and SVM classifiers. The incorporation of grid search op- 
timization highlights the importance of hyperparameter tuning 
in improving classification performance. The overall approach 
serves as an effective integration of embedding techniques and 
machine learning methodologies for semantic tasks. 
 
3.5 AutoSense 
 

A contextual embedding-based model for word sense dis- 
ambiguation (WSD) was implemented, leveraging the princi- 
ples of AutoSense-like approaches with a focus on contex- 
tual embeddings, clustering, and classification. The exper- 
iment was conducted on the Senseval dataset, which con- 
tains multiple .pos files that were parsed using Python’s 

xml.etree.ElementTree module. 
BERT (Bidirectional Encoder Representations from Trans- 

formers) model was implemented to generate sentence-level 
embeddings. The BERT embeddings were generated using the 

BertModel and BertTokenizer classes. Once the embeddings 
were created, cosine similarity was calculated to identify pairs 
of semantically similar sentences. 

To assign sentences to different sense clusters, KMeans clus- 
tering was employed. A threshold-based method was applied 
to filter out sentence pairs based on their similarity scores, 
helping to establish relationships between highly similar sen- 
tences. For classification, the sentence embeddings were 
then passed to a neural network classifier built using Tensor- 
Flow’s Keras API. The network comprised dense layers trained 
over 20 epochs, with early stopping based on validation ac- 
curacy. The model was compiled with Adam optimizer and 
sparse categorical crossentropy as the loss function. Through- 
out the process, training and validation accuracy was tacked 
along with the loss curves. The model was evaluated using 
standard metrics such as F1-score, accuracy, and confusion ma- 
trix, and the results were logged in a separate text file for de- 
tailed analysis. The classification report was generated. 

Key libraries used in this experiment included TensorFlow 
for neural network implementation. 
 

FIGURE 5. AutoSense 
 

 
4 Results 
 

In analyzing the results across all models, it is evident that 
BERT (base uncased) is the most suitable model for this task, 
achieving a high accuracy of 0.97, along with a precision, re- 
call, and F1-score of 0.96 or higher. This model’s slightly 

overfitted learning curves suggest that although the model is 
very powerful at capturing nuanced word contexts, further reg- 
ularization techniques (such as dropout, data augmentation, or 
early stopping) could help it generalize even better. BERT’s 

attention-based mechanism allows it to excel in tasks requir- 
ing deep contextual understanding, by modeling the complex 
relationships between words in different contexts. 



 
 
 

 
TABLE 2. Experimental Setup Requirements 

 
Model Name Libraries Used Modules/Imports Additional Tools/Packages 
BERT (base uncased) Hugging Face Transformers, Py- 

Torch 
transformers, 
xml.etree.ElementTree, torch, 
sklearn.metrics.classification report 

matplotlib, seaborn, AdamW optimizer, 
Learning Rate Scheduler 

RoBERTa Hugging Face Transformers, Py- 
Torch 

transformers, 
xml.etree.ElementTree,torch, 
sklearn.metrics.classification report 

matplotlib, seaborn, AdamW optimizer, 
Learning Rate Scheduler 

Sense2Vec sense2vec,SpaCy sense2vec,spacy, 
xml.etree.ElementTree 

sklearn (Logistic Regression), mat- 
plotlib, seaborn 

ELMo (Logistic Regression) AllenNLP,PyTorch xml.etree.ElementTree, 
sklearn.metrics,torch 

AllenNLP embed- 
dings,matplotlib,seaborn, Random- 
izedSearchCV 

ELMo (LSTM) AllenNLP,PyTorch xml.etree.ElementTree,torch, 
sklearn.metrics 

AllenNLP  embeddings, mat- 
plotlib,seaborn,Adam optimizer, Re- 
duceLROnPlateau 

AutoSense (KMeans) Hugging Face 
Transformers,TensorFlow,scikit- 
learn 

transformers,xml.etree.ElementTree, 
sklearn.cluster.KMeans 

matplotlib, seaborn, Adam optimizer, 
Learning Rate Scheduler 

 
TABLE 3. Results Comparison of Models 

c 
Comparison of Models for Word Sense Disambiguation 

Model Name Accuracy F1-Score Precision Recall Predicted Label (Reference) Training Time/Complexity Inference from Learning Curves 

BERT (base uncased) 0.97 0.96 0.96 0.97 HARD1 O(n2) Slightly overfitting 

RoBERTa 0.9688 0.9685 0.9699 0.9688 HARD2 O(H × (n × d(n + d + m + 1))) per layer Slightly overfitting 

Sense2Vec 0.79 0.77 0.78 0.79 HARD1 O(T · d) - 

ELMo (Logistic Regression) 0.33 0.23 0.25 0.33 cord O(T · d2 ) + O(dELMo · N ) 
ELMo Instability in training 

ELMo (LSTM) 0.2325 0.0877 0.051 0.2325 HARD1 O(T · d2 ) + O(T · d2 ) 
ELMo LSTM Overfitting 

AutoSense (KMeans) 0.91 0.91 0.91 0.91 cord O(n2) Overfitting 

 
RoBERTa, while also achieving strong results with an accu- 

racy of 0.9685, similarly demonstrates slightly overfitting be- 
havior. Its complexity per layer, represented by the cumulative 
time complexity O(H×(n×d(n+d+m+1))), results from its 
attention mechanism, which enhances performance but requires 
significant computational resources. Despite this, RoBERTa 
falls short of BERT in overall performance, likely due to its 
fine-tuning configurations. However, it still proves highly ef- 
fective for tasks that require large-scale language understand- 
ing and could be competitive with further optimization. 

Sense2Vec, though simpler, shows reasonable performance 
with an accuracy of 0.79 and balanced precision and recall. 
However, its lower complexity and computational needs re- 
flect its limitations in handling deep contextual relationships 
compared to transformer models like BERT or RoBERTa. The 
training and learning curves suggest a model that doesn’t gen- 
eralize as well as BERT or RoBERTa, but its efficiency makes 
it an appealing option for applications where resources are con- 
strained. 

ELMo (Logistic Regression) and ELMo (LSTM) performed 

significantly worse, with accuracy dropping to as low as 0.33 
and unstable training behavior. ELMo, despite its original 
promise in polysemy detection due to its bidirectional LSTM- 
based embeddings, struggles to achieve competitive results. 
This is primarily because ELMo embeddings are pre-trained 
and task-specific, making them less adaptable to fine-tuning for 
new tasks like BERT or RoBERTa. ELMo cannot capture the 
deeper contextual nuances that transformers excel at, especially 
since fine-tuning ELMo for this particular task was not feasible 
in this setup. The instability observed in the learning curves 
indicates that it could not converge properly, likely due to the 
inherent limitations of its architecture in handling modern tasks 
like word sense disambiguation when compared to more recent 
models. 

AutoSense performed well, with an accuracy of 0.91 and an 
equally balanced F1-score, precision, and recall of 0.91. The 
KMeans clustering approach used in AutoSense for sentence 
embeddings enables it to effectively group semantically sim- 
ilar words, even without relying on labeled data. However, 
despite its simplicity, the model shows clear signs of overfit- 



 
 
 
ting in the learning curves. AutoSense’s unsupervised nature 

may fail to capture deeper word-context relationships as effec- 
tively as transformer-based models, which use extensive atten- 
tion mechanisms to learn the intricate dependencies between 
words. This overfitting could be attributed to the inherent lim- 
itations of clustering techniques in modeling the full complex- 
ity of language, especially when compared to attention-based 
models like BERT. 

In summary, BERT emerged as the top-performing model, 
with its attention mechanisms and contextual embeddings pro- 
viding superior accuracy in polysemy detection. This aligns 
with existing research, underscoring BERT’s ability to cap- 
ture nuanced meanings in context. AutoSense is a close sec- 
ond, providing a lightweight and computationally efficient al- 
ternative that, while effective, may struggle with generaliza- 
tion due to its simpler architecture. RoBERTa, which shares 
architectural similarities with BERT, also performed well but 
required extensive fine-tuning to optimize for this specific task. 
Sense2Vec and ELMo, while interesting in their approaches, 
do not perform well in comparison, with ELMo’s inability to 

be fine-tuned for specific tasks and Sense2Vec’s limitations in 
handling deep contextual relationships preventing them from 
competing with modern transformer-based architectures. The 
performance of these transformer models reinforces their suit- 
ability for polysemy detection, as they excel at integrating deep 
contextual information through bidirectional attention. 

ELMo, despite its bidirectional LSTM architecture, showed 
limitations in accurately handling polysemous words, reflect- 
ing the constraints of pre-transformer models in capturing fine- 
grained contextual nuances. Similarly, Sense2Vec provided a 
lightweight alternative for polysemy detection but lacked the 
depth needed for complex disambiguation, as it relies on word- 
vector representations rather than contextual embeddings. Au- 
toSense, an unsupervised clustering model, performed effi- 
ciently, but its simplicity made it less effective at distinguishing 
meanings in diverse contexts. 

Models such as XLNet, T5, and large language models 
(LLMs) like GPT variants were intentionally excluded. These 
models, while capable of deep language generation, bring ad- 
ditional computational costs and are often optimized for text 
generation or bidirectional prediction tasks rather than targeted 
word-sense disambiguation. Additionally, simpler embedding 
models such as GloVe or Word2Vec were excluded because 
their static embeddings lack adaptability to sentence context, 
rendering them ineffective for tasks that rely on dynamic word 
meanings. PolyLM [19], a model specific to polysemy, was 
also intentionally excluded. While it may excel in this task, the 
limited availability of research, a single paper, and a GitHub 

repository make it difficult to justify its inclusion. This paper 
encourages further research to enhance models like PolyLM in 
addressing polysemy-related challenges. 

The decision to compare these particular models was rooted 
in the goal of balancing accuracy, interpretability, and accessi- 
bility for practical use. BERT and RoBERTa represent state- 
of-the-art transformer capabilities, while Sense2Vec and Au- 
toSense offer feasible alternatives for less resource-intensive 
applications. ELMo serves as an intermediate baseline, illus- 
trating the performance gap between early contextual models 
and modern transformers. The inclusion of these models ad- 
dresses a significant shortcoming in existing research, provid- 
ing a practical assessment of various methods for polysemy de- 
tection and underscoring the relevance of efficient, accessible 
models for real-world NLP applications. 
 
 
5 Conclusion 

 
Among the evaluated models, BERT demonstrated the high- 

est accuracy for polysemy detection due to its bi-directional 
attention mechanism, while Sense2Vec provided computa- 
tional efficiency suited for resource-constrained applications. 
RoBERTa while slightly less accurate than BERT also per- 
formed well due to its robust training strategies. ELMo under- 
performed due to its reliance on static embeddings and limited 
adaptability, making it less-effective at capturing fine-grained 
word meanings. 

The chosen models represent a spectrum of complexity and 
methodologies, from transformer-based architectures to sim- 
pler, computationally efficient approaches. It also highlights 
the unique strengths and limitations of each model, offering 
insights into their ability to disambiguate words with multiple 
meanings and demonstrating the balance of performance, com- 
putational feasibility, and model interpretability. The findings 
serve as a foundation for further applications of polysemy de- 
tection in particularly high-stakes domains. 
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