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Abstract—Warfarin is a commonly used anticoagulant for
which dosing needs to be individually optimized highly tightly
to match against the potential for bleeding and thrombotic side
effects. We introduce herein in this article a machine learning
system that makes use of clinical, genetic, and demographic
information to predict warfarin patient-specific dosing. Our
method is becoming more sophisticated with various iterations
starting from a baseline model, then an optimal XGBoost
model incorporating polynomial feature expansions, and finally
ending with an optimized gradient boosting implementation
coded from scratch. Model performance is evaluated on R?
metrics complemented with explainability tests using SHAP
and LIME, hence achieving accuracy and interpretability to
clinical decision-making.

Index Terms—Warfarin Dosage, XGBoost, Pharmacoge-
nomics, Machine Learning, Explainable AI, SHAP, LIME.

I. Introduction

Warfarin continues to be one of the most commonly
prescribed oral anticoagulants, yet dosing continues to be
a significant problem for clinicians. The natural variabil-
ity of patients, based on differences in genetic makeup,
age, body mass index, dietary intake, and concomitant
medications, renders it difficult to identify a “one-size-
fits-all” dose. Improper dosing has dire effects, such as
hemorrhagic complications in the case of overdosing or
thromboembolic complications in the case of under-dosing.
To this purpose, precise warfarin dosage estimation is not
only a pharmacological requirement but also an essential
component of patient safety and therapeutic efficacy.

Over the past few years, the science of pharmacoge-
nomics has shed new light on how genetic diversity affects
drug metabolism. For warfarin, CYP2C9 and VKORC1
genes have been found to be primarily responsible for
predicting the metabolism and response of the drug. But
while such genetic markers yield useful insights, clinical
and demographic variables need to be incorporated to
achieve an integrated model of dosage prediction. Empir-
ical rules or linear regression techniques serve as the basis
for conventional dosing algorithms, but the above tech-
niques fail to capture the non-linear interactions between
such heterogeneous variables. This study is inspired by
the desire to fill the gap between data complexity that is

becoming more accessible to patients and the limitations
of traditional dosing approaches.

By employing sophisticated machine learning methods,
i.e., gradient boosting models, we suggest a model with
the ability to handle the high dimensionality and non-
linearity present in pharmacogenomic data. Our solution
starts with a baseline model that compares a range of
traditional algorithms. This is preceded by an iterative
improvement with XGBoost—a gradient boosting library
of high performance well known for its performance with
structured data—and augmented further by augmenta-
tion with polynomial feature transformations in order
to extract non-linear trends. The final iteration of our
approach introduces a locally implemented gradient boost-
ing implementation replicating the concepts of XGBoost
but written from scratch based on decision trees as base
learners.

This tailored approach offers not only more control over
the learning process but also has the advantage of demon-
strating explicitly how each iteration enhances the overall
performance of the prediction. The addition of explainable
AT (XAI) techniques, i.e., SHAP and LIME, guarantees
that the model’s decision process is understandable. This
is particularly important in a clinical environment where
practitioners must know the reason behind a recommended
dose of warfarin. Its contributions are two-pronged.

First, this work presents an iterative, incremental
method for refining machine learning algorithms for war-
farin dosing, and highlights the significance of feature
engineering as well as non-linear transformations. Second,
it highlights the focus on model interpretability through
incorporating XAI approaches, thereby inspiring more
confidence from clinical practitioners to deploy data-
driven solutions. The context of this research work is,
collectively, to enhance patient outcomes by minimizing
the trial-and-error nature of warfarin dosing.

If clinical, genetic and demographic variables are com-
bined in a single model, the precision of dosage prediction
may be increased. This alone would be capable of minimiz-
ing the occurrence of side effects and improving the general
safety of warfarin therapy. Furthermore, by producing an
interpretable model, our work avoids one of the main



hindrances to implementing machine learning in medicine.
This introduction not only provides the background for
the ensuing technicalities, but also highlights the clinical
importance that proper warfarin dosing can contribute
to the management of patients. Throughout the rest of
this article, we dig deeper into the literature, outline our
multistep approach, report comprehensive experimental
results, and end with a discussion of results and possible
future work.

II. Literature Survey

The literature on warfarin dosing and pharmacogenomic
modeling is vast and varied, and it crosses more than
one field of study, i.e., medicine, bioinformatics, and data
science. Clinical algorithms and simple linear regression
models based on clinical factors such as age, weight, and
concurrent medications were used in the first studies.
The models, while providing a simple framework for
warfarin dosing, could not capture the interactions among
clinical and genetic factors. Wadelius et al’s pioneer
work showed the central role played by genetic CYP2C9
and VKORCI1 polymorphisms in warfarin metabolism
and hence the motivation to employ a more integrative
modeling strategy [1].

Along with the augmentation of high-dimensional data,
complexity in models was also augmented. Scientists
started to explore machine learning approaches to improve
dose prediction. Early machine learning techniques such
as decision trees and support vector machines were
tried on warfarin dosing with variable success. Gage
et al. and Klein et al. presented some of the first
data demonstrating that more sophisticated models
could better estimate the optimal dose than standard
linear regression models. These models were frequently
condemned as being uninterpretable and hard to integrate
domain expertise.[2][3]

Ensemble methods marked a significant turning point
in the literature. Random Forests, where the predictions
from ensembles of decision trees are aggregated, were
demonstrated to be able to better identify non-linearity
and interaction than those with single models. Although
better is the ensemble approach such as Random Forests,
they are "black-box” models and do not inform one about
the way in which a specific feature adds to the overall
prediction. This openness became an issue in a medical
setting where knowing the reasoning behind suggesting
a dosage is as important as the accuracy of the predictions.

Meanwhile, gradient boosting techniques were an
available alternative. Friedman’s work on gradient
boosting established the theoretical foundation for
techniques that iteratively improve predictions into being
more accurate by making incremental improvements on
residual errors. XGBoost, a particular variant of gradient

boosting, was made popular because it was scalable,
performance-oriented, and superior on structured data.[4]
Various studies proved that XGBoost could well capture
non-linear interactions between clinical and genetic
variables in warfarin dosing. For example, one study
by Asiimwe et al. compared more than twenty machine
learning algorithms and established that ensemble
techniques, specifically gradient boosting-based ones,
achieved a significant predictive performance gain. [10]

Also, research using feature engineering methods like
polynomial expansion has demonstrated that adding
interaction terms can further increase the capacity of
the model to learn sophisticated relationships. In one
study, Huang et al. used polynomial transformations to
clinical data and found an unprecedented improvement
in model performance. [6]While these methods improve
the accuracy of the model, they also enhance the
model’s complexity, for which strong techniques of model
interpretability are required.

The problem of interpretability has generated rising
interest in explainable AI (XAI) techniques. A couple
of the more popular approaches of XAI are SHAP
(SHapley Additive Explanations) and LIME (Local
Interpretable Model-Agnostic Explanations). SHAP,
a game-theoretic method, is a global view of feature
contributions with each feature receiving a value of
contribution in the prediction. LIME, meanwhile, obtains
local interpretability by approximating the model near
a single prediction with an interpretable linear model.
Various tests have compared the two methods, and most
of them have concluded that although LIME can be
useful for making predictions, SHAP provides a more
overall and consistent explanation of what the model is
doing. The integration of these methods in warfarin dose
models is particularly beneficial, as clinicians need clarity
to have faith in the AI recommendations.

Additional studies by Lee et al. investigated deep
learning methods like recurrent neural networks (RNNs)
and long short-term memory (LSTM) networks for
warfarin dosing.[11] While highly accurate, such models
were too complex and computationally demanding
for clinical applications. Lower-accuracy but more
interpretable models were employed in clinical
trials instead. This tension between accuracy and
interpretability is seen repeatedly throughout the
literature.

Recent research also considered incorporating the
lifestyle and socioeconomic aspects into dose models.
One such model has been proposed by Anand et al.
where, although cheaper, it ignored the pharmacogenetic
markers with resulting lower prediction capacity.[5] On
the other hand, those studies including genetic and



clinical information, i.e., like by Mohamed et al. and Liu
et al., have achieved a better capacity through exploiting
the complementarity of both types of information.[7][8]]

Overall, the literature emphasizes the progression from
straightforward linear models to sophisticated ensemble
and gradient boosting techniques, alongside a concurrent
focus on model interpretability. Although the initial work
was pioneering through the identification of the principal
genetic markers, later work has involved the addition of
extra variables as well as more advanced machine learning
algorithms. The employment of XGBoost, specifically, has
been in widespread practice due to the fact that it can
handle non-linear interaction and scalability. However, the
question lies in how one can achieve very high prediction
accuracy without compromising model interpretability—a
trade-off that is critically significant in a clinical setting.
This literature review not only points to the progress in
warfarin dosing models but also to the weaknesses that
our contribution will plug, namely through iterative model
refinement and explainable Al incorporation.

III. Methodology

This is the full description of the methodology that was
used in deriving a prediction model to estimate warfarin
dosage. Step-by-step, our method will be to refine and
enhance the model performance progressively. Method-
ology has various phases, such as data preprocessing,
feature transformation and engineering, baseline model,
and iterative refinement. Further, we explain the gradient
boosting implementation to closely resemble XGBoost but
defined manually to aid in better understanding how the
model learns.

A. Data Cleaning and Preprocessing

Data preprocessing is a very important part of any
machine learning pipeline. Data for this research involves
patient history with clinical values, demographics, and
genetic profiles. Preprocessing has multiple stages. First,
missing values in the data set are addressed by applying
both KNN imputation for numerical attributes and
mode imputation for categorical attributes. For a high
missing rate, median imputation is applied to prevent the
incorporation of outlier values into the distribution. The
step is important in ensuring the integrity of the data set
and preventing the model from learning from incomplete
data. Then, normalization of numerical features is done
through min-max scaling. This is to ensure that all
features are equally contributing to the learning process
and that the model does not bias towards features with
larger numerical ranges. One-hot encoding is then applied
to the categorical features like gender and ethnicity.
One-hot encoding converts categorical features into a
matrix of binary features, wherein the model can handle
categorical features numerically. Outliers are identified
using the Interquartile Range (IQR) technique. Outliers

based on data entry errors or rare patient statuses are
eliminated so that they won’t perform negatively on the
model. Except for the above methods, missing genetic
information for genes like VKORC1 and CYP2C9 are
imputed using the distribution observed in the training
set in a way that variance is preserved.

Feature engineering is required in an effort to capture the
high-level interactions within pharmacogenomic data. We
utilize both domain knowledge and automated feature
construction methods in our methodology. We begin by
finding the Body Mass Index (BMI)—from the given
values of height and weight. The BMI is obtained as the
ratio of weight to height squared. The transformation
is due to the fact that BMI is known to impact drug
distribution and metabolism. Then, we utilize polynomial
feature transformation to pick up non-linear relations
among continuous features. For instance, based on
height and weight features, the transformation includes
other features: height?, weight?, and the product of
height and weight. The justification for polynomial
expansion is so that the model is able to learn high-order
interactions that otherwise would be lost when learning
linear relations alone. This phase significantly increases
the dimensionality of the feature space, which, being
computationally more expensive, enables the model to
learn more nuanced patterns of the data.

B. Baseline Model Building using XGBoost

The initial major implementation of our approach uses
the XGBoost algorithm. XGBoost, or eXtreme Gradient
Boosting, is a very fast and scalable implementation of
gradient boosting that has proven to have extremely
good performance on structured data. Transformed and
preprocessed data are used in an XGBoost regression
model in this implementation. The model is learned to
reduce the mean squared error (MSE) between actual
and predicted dosages of warfarin. Hyperparameters at
training are tree depth, learning rate, and subsample
ratio, which are optimized to work best. The initial
XGBoost model achieved an R? score of 46.1%, serving
as a benchmark for further improvements.

C. Improved Model with Polynomial Feature Transforma-
tion

The second iteration adds polynomial feature transfor-
mations to the basic XGBoost model. Already covered,
adding higher-order features allows the model to learn
about non-linear relationships among predictors. As part
of this iterative optimization, the XGBoost model is
retrained on the expanded set of features. All the boosting
trees in the ensemble can now utilize the polynomial
features and the original features as well, gaining a
better understanding of data structure. Including those
transformations had a tremendous performance boost,
since the model achieved an R? of 76.13%.



D. Custom Gradient Boosting Implementation: Detailed
Explanation

The last and most complete form of our solution is the
development of a custom gradient boosting algorithm.
The custom implementation is designed to mimic the
essential ideas of XGBoost but with greater transparency
and learning process control. The custom gradient
boosting model is obtained through the use of decision
trees as weak learners. It starts by estimating an initial
prediction that is simply the mean of the target variable
(warfarin dose) over the training data.

1) First Prediction and Residual Computation:
The algorithm begins with the prediction of the mean
warfarin dose for every patient. The residual error for
each case is calculated as a difference between the initial
prediction and this first prediction. This residual forms
the foundation for the first weak learner.

2) Training the First Decision Tree: A decision tree
regressor is trained on the residuals. The aim of this
tree is to capture patterns in the error distribution not
picked up by the initial model. The tree is set up with a
maximum depth (say 8) to avoid overfitting and keep the
model generalizable.

3) Incremental Update using a Learning Rate: After
the decision tree is trained, its predicted values are
scaled down by a small learning rate (e.g., 0.05) and
incorporated into the initial predictions. The use of a
small learning rate prevents the model from immediately
making gigantic prediction adjustments and thereby
avoids overfitting.

4) Tterative Residual Learning: The model calculates
updated residuals based on updated predictions. The
residuals are then used to learn a new decision tree
and then combine its scaled prediction with the present
prediction. This procedure is repeated a predetermined
number of times, and in each step, it decreases the
error further by targeting the residual remaining. Early
stopping is applied to stop training if mean squared error
decrease plates for some iterations so that overfitting can
be avoided.

This specialized implementation not only replicates
the iterative process of error correction of XGBoost
but also provides fine-grained ability to tune every
hyperparameter. Decision trees, or weak classifiers,
are trained in an iterative manner to give the most
importance to the best residual errors. The collective
result of these incremental adjustments is a model that
reliably estimates the intricate interaction of input
features and warfarin dosage.

In short, our approach ranges from extensive data pre-
processing and intricate feature engineering to a cutting-
edge ensemble learning architecture. The transformation
of a simple XGBoost model into a highly sophisticated
custom-built gradient boosting model captures the spirit
of model fine-tuning in iterations. After incorporating
polynomial features and taking advantage of the power of
sequential learning, the ultimate model yields an R? value
of 94.36%, much greater than in predictive accuracy. The
transparency of the custom implementation also makes
the model more suitable for clinical applications, where
usability is just as important as performance.

5) Model Checking and Loss Curve Plotting: During
the training of the model, the performance of the model
is checked based on the mean squared error (MSE). It is
plotted with a loss curve to see how MSE goes down
in later iterations. Based on this curve, the trend of
convergence of the algorithm can be studied and the
optimal number of boosting iterations determined. The
pseudocode for the custom gradient boosting algorithm is
described in Algorithm 1.



Algorithm 1: Algorithm for Custom Gradient
Boosting

class CustomGradientBoosting:
def __init__ (self, n_estimators=100,

learning_rate=0.05, max_depth=8):
self.n estimators = n_estimators
self .learning_rate = learning_rate
self .max_depth = max_depth
self . models = []
self.loss__history = []

def fit(self, X, y):

self.init_pred = np.mean(y)

y_pred = np. full (y.shape,

self.init_pred)

i in range(self.n_ estimators):

residuals =y - y_pred

tree = DecisionTreeRegressor (\

max_ depth=self .max_depth)

tree. fit (X, residuals)

self .models.append(tree)

y_pred += self.learning_rate *
tree.predict (X)

mse = mean_ squared__error (y,
y_pred)

self.loss_history .append (mse)

if i > 20 and mse >
self .loss history [-20]:
break

for

def predict (self, X):
y_pred = np. full ((X.shape[0],),
self.init_pred)
for tree in self.models:
y_pred += self.learning_rate *
tree.predict (X)
return y_ pred

IV. Results

The experimental comparison of the warfarin dosage
prediction models shows a consistent improvement in
performance with each iteration. The first XGBoost
model, which was trained on the preprocessed data
without polynomial feature expansion, had an R? score of
46.1%. While the model was a good starting point, it was
evident that the linear assumptions used in the baseline
approach were not enough to capture the non-linear
interactions in the data.

With  the addition of polynomial feature
transformations, the XGBoost model’s performance
significantly enhanced to an R? of 76.13%. The reason
for this was that the improved capacity of the model
to identify interaction effects among variables like
height, weight, and BMI. The introduction of higher-
order terms enabled the algorithm to identify intricate
relationships that are of the utmost importance in
warfarin’s pharmacokinetics.

Metric

Mean Squared Error (MSE)
R-squared (R?)

R? Score (%)

Value
16.177956176667514
0.94353946983268
94.36%

Table I: Final Iteration Model Evaluation Metrics

The final iteration, the custom gradient boosting,
yielded an R? of 94.36% (ref Fig. 1). This round is a
radical improvement in performance because the custom
model was able to iteratively refine residual errors to a
very high degree of accuracy. A closer examination of the
loss curve reveals a consistent reduction in mean squared
error with boosting iterations, which means that the
model was learning well from the residuals. Early stopping
criteria were used so that training was terminated before
the model started to overfit the training set.

Other performance measures like Root Mean Squared
Error (RMSE) were tracked in addition to R? measure dur-
ing training. RMSE reduced incrementally, demonstrating
how the model’s accuracy at predicting warfarin dose rises.
Loss curve plots indicate that the model consistently con-
verges and additional iterations yield decreasing returns.

Feature Value Effect on Prediction
Gender male 1 T (increase)
Target INR 2.5 T (increase)
Amiodarone (Cordarone) 0 T (increase)
Height (cm) 2.427 T (increase)
Weight (kg) 1.7 T (increase)
Aspirin 1 1 (decrease)
BMI 31.05 1 (decrease)
Age 0.08328 1 (decrease)

Table II: Feature Contributions to Model Prediction

Feature Effect Reason

Cyp2C9 Genotypes (*1/*2 &
*1/%3)=0

Increases | No genetic mutation — Warfarin metabolized

faster

Gender = Male
Target INR=2.5

Increases | Men need higher doses than women

Increases | Higher INR target — needs stronger effect

Amiodarone (Cordarone) =0 | Increases | Not taking Amiodarone — No drug

nteraction reducing dose

Height & Weight Increases | Larger body — Needs more Warfarin

Aspirin=1 Decreases | Aspirin is also a blood thinner — Reduces
Warfarin requirement

BMI =31.05 Decreases | More fat storage — Less active Warfarin in
blood

Age (Older) Decreases | Older people metabolize Warfarin slower

INR on Reported Dose Decreases | Higher INR — Patient is sensitive to Warfarin

Table III: Feature Contribution from SHAP

Explainability was of key interest in our assessment.
SHAP and LIME were hence utilized for explanation of
prediction. SHAP global explanation provided every one
of the features’ contribution to the resultant prediction as
a numerical value (ref. Fig.2). Such a feature as CYP2C9
genotype, VKORCI1 status, age, BMI, and concomitant
medication presence were found to contribute significantly



positively or negatively to the predicted dose(ref. Table I).
The SHAP value distributions provided insight into the
way these features interact within the model framework,
thus enhancing the clinical validity of the predictions.

Table IV: LIME Feature Importance for Dose Prediction

Furthermore, the incorporation of explainable Al
methods, including SHAP and LIME, provided insightful
information regarding the feature contributions, thereby
enhancing the model interpretability for doctors.

The findings that are described here highlight the
possibility of synergy between cutting-edge machine

Effect on Dosel¢arning methods and strong data preprocessing and

Feature LIME Value (Mean)

CYP2C9 Genotype (¥1/*3) -5.7 Decreases dose
VKORC1 Genotype (A/A) -4.2 Decreases dose
Age (75 years) -2.8 Decreases dose
BMI (30.2) +3.6

Weight (85 kg) +3.9 Increases dose ¢
Amiodarone Use -6.1 Decreases dose
Aspirin Use -1.2

Target INR (2.5) +4.4

rature engineering to tackle the subtle challenges of
warfarin dosing. Along with revealing a correct high-

Increases dose performing prediction model, our contribution provides

tate-of-the-art computational methods into the clinical

Decreases dosePractice setting. The rigorous interpretability analysis
Increases dose also allows clinicians to have confidence in the model

LIME was utilized to generate localized explanations
for point predictions. Through the approximation of the
behavior of the complex model around a particular data
point by an interpretable linear model, LIME enabled
us to check that the model’s decision-making process
conformed to clinical expectations (ref. Fig. 3.1). For
instance, in scenarios where a patient had a known genetic
variation that linked the patient to slower metabolism,
LIME emphasized the relative negative weight in the
dosage prediction (ref. Fig. 3.2).

The use of quantitative performance metrics and
qualitative interpretability tests together highlights the
robustness of the final model. The outstanding R? value of
94.36% clearly shows that the tailored gradient boosting
model can explain almost all warfarin dosing variability.
Moreover, the use of XAl techniques ensures the model
predictions not only accurate but also transparent and
reliable for clinical decision-making.

Overall, the experimental outcomes confirm the effec-
tiveness of our iterative process. The journey from a vanilla
XGBoost model to a polynomial-featured model, and
then to an in-house gradient-boosting implementation,
testifies to the significance of both feature engineering
and algorithmic design. The outcomes also prove that
an well-engineered machine learning model can mitigate
the inherent complexity of warfarin dosing while yielding
understandable and actionable insights.

V. Conclusion

We introduce in this paper the complete methodology
of warfarin dosage prediction wusing a tailored
XGBoost-based pharmacogenomic machine learning
algorithm, culminating in a tailored gradient boosting
implementation. Our methodology progressed in
various iterative stages from simple baseline models
to improved feature transformations to an entirely
tailored implementation. The final implemented model
had an R? of 94.36%, which is notably improved
predictive performance compared to the initial methods.

recommendations, which is of paramount importance to
its use in actual clinical practice.

Future research will involve prospectively validating the
model in clinical trials and investigating its integration
with electronic health records (EHR) systems. Actions like
these are needed to further calibrate the model and to
ensure that it can be easily integrated into clinical prac-
tice. Overall, the results of this study are an encouraging
step towards safer and more personalized warfarin therapy
and illustrate the revolutionary potential of explainable
machine learning to revolutionize healthcare.
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