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Abstract—The rapid evolution of large language models 
(LLMs) has made machine-generated text (MGT) increasingly 
indistinguishable from human writing, posing challenges in 
authenticity detection. In this study, we present a novel hybrid 
framework that integrates the structural sensitivity of string 
kernels with the semantic depth of transformer embeddings to 
detect AI-generated content. We propose four complementary 
methods including Attention-Augmented Kernels and a Custom 
Kernel Function to capture both linguistic structure and 
contextual nuance. Our evaluation across eight diverse datasets, 
featuring texts from GPT-3.5, GPT-4, DeepSeek, and Kimi, 
demonstrates that the Transformer-Guided N-gram Selection 
and Custom Kernel Function consistently outperform 
traditional baselines in accuracy and computational efficiency. 
This framework offers a scalable, interpretable, and robust 
solution for real-world MGT detection across varied generation 
styles. 

Keywords—AI-Generated Text Detection, Transformer 
Embeddings, String Kernels, Hybrid Models, Natural Language 
Processing 

I. INTRODUCTION 
The unprecedented advancements in large language 

models (LLMs), such as GPT-3.5, GPT-4, DeepSeek, and 
Kimi, have significantly enhanced the fluency, coherence, and 
contextual awareness of machine-generated text. These 
models can now generate content that closely mirrors human-
authored writing, making it increasingly difficult to 
distinguish between the two. While this technological 
progress is transformative for many applications ranging from 
automated writing assistants to academic research support it 
also raises serious concerns about text authenticity, academic 
integrity, and the potential spread of misinformation. 
Consequently, developing reliable methods to detect machine-
generated text (MGT) has become a pressing challenge in 
natural language processing (NLP). 

Initial approaches to MGT detection were primarily based 
on stylometric analysis and shallow classifiers, using features 
such as word frequency, sentence length, and n-gram patterns. 
While interpretable and computationally efficient, these 

methods fall short when facing sophisticated LLM outputs 
that emulate human linguistic patterns. More recently, 
transformer-based models, especially those leveraging pre-
trained architectures such as BERT and RoBERTa, have 
become the dominant paradigm for text classification and 
detection tasks due to their ability to capture deep contextual 
and semantic information [1], [2]. For instance, Bethany et al. 
[1] proposed T5LLMCipher, which utilizes subclustering of 
T5 embeddings to generalize across unseen generators, while 
Ben-Fares et al. [2] introduced a syntactically motivated 
model that aggregates token-level predictions from 
transformer layers for multilingual MGT detection. 

Several studies have explored hybrid detection strategies 
that combine syntactic and semantic signals. Liu and Kao [3] 
proposed CopyCAT, which augments training data using 
saliency-aware masking to simulate varied input styles and 
improve robustness. Bafna et al. [4] introduced a RoBERTa-
BiLSTM classifier that integrates contextual and sequential 
dependencies, improving detection across domains. 
Meanwhile, Abdalla et al. [5] emphasized explainability and 
generalization in detecting AI-generated scientific texts using 
transformer-based classifiers. 

Robustness to paraphrased or obfuscated AI text is another 
core concern. Macko et al. [6] investigated the effects of 
authorship obfuscation techniques, such as paraphrasing and 
sentence fusion, on MGT detection performance, highlighting 
the trade-off between detection evasion and readability. Pu et 
al. [7] showed that models trained on medium-sized LLM 
outputs can generalize to more powerful models in zero-shot 
settings. Adversarial fine-tuning strategies have also been 
proposed to improve resilience, such as the work by Lee and 
Jang [8], which fine-tunes BERT to handle input variation in 
length and domain. 

Benchmarking frameworks like SemEval, PAN, and 
IberLEF have standardized evaluation protocols for MGT 
detection. Yang et al. [9] introduced DNA-GPT, a training-
free approach using n-gram divergence, while Bao et al. [10] 
presented Fast-DetectGPT, a zero-shot method leveraging 
conditional probability curvature to detect LLM outputs 

mailto:nzaki@uaeu.ac.ae
mailto:nzaki@uaeu.ac.ae
mailto:nzaki@uaeu.ac.ae
mailto:nzaki@uaeu.ac.ae
mailto:nzaki@uaeu.ac.ae
mailto:nzaki@uaeu.ac.ae


efficiently. However, many existing methods are tested only 
on narrow datasets or outdated models, limiting their 
generalizability and real-world applicability. 

Human performance in MGT detection has also been 
studied. Ippolito et al. [11] found that human evaluators often 
fail to detect AI-generated content when it is grammatically 
correct and topically relevant. Lyu et al. [12] and Giudice et 
al. [13] identified common weaknesses in AI-generated texts, 
such as incoherent topic transitions and unnatural length 
distributions. Tools like RoFT [14] and Binoculars  [15]have 
been used to evaluate and compare human vs. machine 
performance, consistently showing that even simple lexical 
patterns can mislead both. 

Another limitation of many transformer-based approaches 
is their high computational cost and dependence on retraining 
or fine-tuning. As LLMs continue to evolve rapidly, models 
tied to specific generators may struggle to remain effective 
without constant updates. In contrast, simpler methods, while 
efficient, often lack the semantic depth needed to detect 
polished AI content. The need for scalable, adaptable, and 
interpretable detection models that balance performance and 
efficiency remains largely unmet. 

In response to these challenges, we propose a novel hybrid 
detection framework that integrates the structural sensitivity 
of string kernels [16], [17] with the semantic richness of 
transformer embeddings. Our approach introduces four 
complementary methods: 

• Attention-Augmented Kernel: Enhances 
traditional string kernel classification by 
incorporating attention scores from transformers to 
emphasize semantically important tokens. 

• Error Pattern Analysis: Utilizes masked language 
model (MLM) loss to approximate text fluency and 
identify statistical anomalies characteristic of AI-
generated content. 

• Transformer-Guided N-gram Selection: Refines 
feature extraction by aligning n-gram boundaries 
with transformer tokenization, improving semantic 
coherence. 

• Custom Kernel Function: Dynamically fuses 
semantic embeddings and structural n-gram patterns 
via a tunable weight, enabling adaptability across 
text styles and LLM variants. 

We evaluate these methods on a comprehensive 
benchmark composed of eight datasets, including both AI-
enhanced and fully AI-generated texts derived from GPT-3.5, 
GPT-4, DeepSeek, and Kimi. The datasets include both 
refined human-authored abstracts edited by LLMs and texts 
generated entirely from prompts, providing a rigorous testbed 
for detection. Notably, the proposed Transformer-Guided N-
gram Selection and Custom Kernel Function consistently 
achieve high classification performance with significantly 
reduced computational overhead compared to pure 
transformer-based baselines. 

Our main contributions are summarized as follows: 

• We propose a novel hybrid framework for MGT 
detection that effectively combines semantic 

insights from transformers with the interpretability 
and efficiency of string kernels. 

• We introduce a custom kernel function that balances 
structural and contextual features, enhancing 
adaptability to previously unseen AI-generated texts 
without retraining. 

• We construct and evaluate on a diverse, publicly 
available benchmark dataset featuring multiple 
modern LLMs and text generation styles. 

• We demonstrate that our methods outperform 
existing baselines in accuracy, robustness, and 
computational efficiency, offering a scalable and 
generalizable solution for real-world applications. 

This study lays the foundation for a new class of 
interpretable and efficient AI-text detection systems that are 
not only accurate but also adaptable to the fast-changing 
landscape of generative language models. 

 

II. METHOD 

A. Datasets 
The methodology involved constructing a diverse and 

robust dataset to effectively evaluate the detection of machine-
generated text (MGT). The dataset includes eight subsets 
(D1–D8), each containing both human-written and AI-
generated text samples. Human-written samples, sourced from 
Scopus scientific abstracts published between 2010 and 2015, 
predate modern AI models and thus provide an unbiased 
benchmark. AI-generated samples were produced using 
advanced language models such as GPT-3.5, GPT-4, 
DeepSeek, and KIMI, and labeled accordingly: AI-generated 
texts marked as "1" and human-written texts as "0". 

The AI-generated samples are categorized into two groups: 
Refined AI-Generated Texts (D1–D4), involving AI 
enhancements or paraphrasing of original human-written 
abstracts, posing a challenging detection scenario; and Fully 
AI-Generated Abstracts (D5–D8), consisting entirely of AI-
generated content based on given keywords, allowing 
assessment of the model’s ability to distinguish purely 
synthetic text. The dataset is designed to rigorously evaluate 
detection model performance across various AI text-
generation styles. Detailed descriptions of the datasets and the 
data itself are publicly available on GitHub 
(https://github.com/nzaki02/SK-LLM) as a resource for 
further research. 

B. Method Overview 
The proposed methodology integrates transformer-based 

deep contextual representations and structural text similarities 
captured by string kernels to robustly detect machine-
generated text (MGT). Specifically, we introduce four novel 
kernel-based models designed to enhance the discriminative 
capabilities of MGT detection: 

• Attention-Augmented Kernel: This model 
integrates transformer attention scores into 
traditional string kernels, effectively weighting 
structural features by their contextual importance. 

• Error Pattern Analysis Kernel: This method 
leverages perplexity-based error scores derived 
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from masked language modeling (MLM) to capture 
subtle linguistic inconsistencies prevalent in AI-
generated content. 

• Transformer-Guided N-gram Selection: This 
approach aligns n-gram extraction directly with 
transformer tokenization, ensuring extracted 
features represent semantically coherent token 
sequences, thus improving model generalizability. 

• Custom Kernel Function: A hybrid kernel is 
proposed, dynamically balancing deep semantic 
embeddings and structural n-grams via a tunable 
weighting parameter α, thus enabling tailored 

emphasis on either semantic depth or structural 
fidelity. 

C. Data Preprocessing 
Raw text data undergoes comprehensive preprocessing, 

including removal of extraneous symbols, special characters, 
and redundant whitespace. Subsequently, texts are tokenized 
using a pretrained BERT tokenizer to ensure uniform input 
representation. Structural linguistic patterns are extracted 
through character-level n-gram modeling (with n ranging 
from 2 to 5), and the dataset is randomly partitioned into 
training (80%) and testing (20%) subsets for rigorous model 
evaluation. 

D. Feature Extraction 
Multiple complementary feature types are extracted to 

optimize detection performance. We utilize BERT-derived 
contextual embeddings (CLS token) as deep semantic 
representations. To capture structural nuances, character-level 
n-gram features are extracted. Additionally, we quantify 
linguistic significance through mean attention scores derived 
from the transformer’s final layer, measuring the overall 
token-level importance, and we approximate perplexity using 
MLM-based error scores to evaluate textual fluency and 
coherence. 

E. Mathematical Formulation 

• Mean Attention Score: 𝑨𝒊 =
𝟏

𝑯𝑻
∑ ∑ 𝑨𝒉,𝒕

𝑻
𝒕=𝟏

𝑯
𝒉=𝟏  

where 𝐻 represents attention heads, 𝑇 is the 
sequence length, and 𝐴ℎ,𝑡 denotes the attention 
assigned by head ℎ to token 𝑡. 

• Perplexity Approximation (Error Score): 𝑷𝒊 =
𝟏

𝑵
∑ 𝑳𝑴𝑳𝑴(𝑿𝒊,𝒋)

𝑵
𝒋=𝟏  where 𝑁 indicates token count, 

and 𝐿𝑀𝐿𝑀 is the 𝑀𝐿𝑀 loss. 
• Basic String Kernel: 𝐾𝑠𝑡𝑟𝑖𝑛𝑔(𝑋𝑖 , 𝑋𝑗) =  𝑉𝑖 ∙

𝑉𝑗
𝑇 where 𝑉𝑖, 𝑉𝑗  are the respective 𝑛-gram vectors. 

• Attention-Augmented Kernel: 
𝐾𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑖 , 𝑋𝑗) =  (𝐴𝑖𝑉𝑖) ∙  (𝐴𝑖𝑉𝑖)

𝑇 
incorporating attention-weighted structural vectors. 

• Error Pattern Analysis Kernel: 𝑲𝒆𝒓𝒓𝒐𝒓(𝑿𝒊, 𝑿𝒋) =

(𝑷𝒊𝑽𝒊) ∙ (𝑷𝒋𝑽𝑱)
𝑻
 incorporating perplexity-based 

error weighting. 
• Transformer-Guided N-gram Kernel: 

𝐾𝑔𝑢𝑖𝑑𝑒𝑑 (𝑿𝒊, 𝑿𝒋) = 𝑽𝑩𝑬𝑹𝑻−𝒕𝒐𝒌𝒆𝒏𝒊𝒛𝒆𝒅,𝒊 ∙

𝑉𝐵𝐸𝑅𝑇−𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑,𝑗
𝑇  using transformer-aligned 

tokenization. 

• Custom Kernel Function (Proposed Model): 
𝐾𝑐𝑢𝑠𝑡𝑜𝑚(𝑿𝒊, 𝑿𝒋) = 𝜶𝑲𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄 (𝑿𝒊, 𝑿𝒋) + (𝟏 −

𝜶)𝑲𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒂𝒍 (𝑿𝒊, 𝑿𝒋) where semantic and 
structural kernels are defined as: 
𝐾𝑐𝑢𝑠𝑡𝑜𝑚(𝑿𝒊, 𝑿𝒋) = 𝐸𝑖 ∙ 𝐸𝑗

𝑇 , 𝑲𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒂𝒍 (𝑿𝒊, 𝑿𝒋) =

𝑉𝑖 ∙ 𝑉𝑗
𝑇  and 𝛼 ∈  [0,1] controls their relative 

importance. 

F. Baseline Model 
For baseline comparison, we implement a transformer-

only classifier using solely deep contextual embeddings: �̂� =
𝑓𝐿𝐿𝑀(𝐸𝑖)  where 𝐸𝑖  represents BERT-derived embeddings, 
and 𝑓𝐿𝐿𝑀 is the classification function. 

All implementations and datasets used in this study are 
publicly accessible on GitHub (https://github.com/nzaki02/-
SK-LLM), facilitating reproducibility and further research. 

The evaluation of models employs several standard 
metrics to ensure comprehensive assessment: Precision, 
measuring correctness of positive predictions; Recall, 
measuring coverage of actual positive instances; and F1 Score, 
which balances precision and recall. Accuracy provides the 
overall proportion of correctly classified instances.  

Computational efficiency is assessed by measuring total 
processing time during training and testing, including feature 
extraction, model fitting, and prediction phases. The 
processing time is recorded using Python’s time module, 
allowing a comparative analysis of performance versus 
computational cost across different methods. 

 

III. EXPERIMENTAL WORK AND RESULTS 
Extensive experiments were conducted using eight diverse 

datasets (D1–D8) to evaluate the effectiveness of the proposed 
machine-generated text (MGT) detection methods. Models 
were implemented in Python 3.9, utilizing scikit-learn and 
Hugging Face Transformers, and executed on Google Colab 
with an NVIDIA A100 GPU for accelerated processing. Data 
was partitioned into 80% training and 20% testing subsets, and 
features were extracted using character-based n-grams 
ranging from 2 to 5. Performance was evaluated using 
multiple metrics, including precision, recall, F1-score, 
accuracy, and computational processing time. 

The study compared two baseline models, the Basic String 
Kernel, which employs character-level n-gram similarity, and 
the LLM Only model, which utilizes BERT embeddings with 
four proposed enhanced methods: Attention-Augmented 
Kernel, Error Pattern Analysis, Transformer-Guided N-gram 
Selection, and the Custom Kernel Function. All methods 
utilized polynomial Support Vector Machines (SVM) with 
default hyperparameters, a regularization parameter (C=10), a 
convergence tolerance of 10⁻⁴, and a maximum of 1,000 
iterations. In the Custom Kernel Function, a balance between 
semantic (BERT embeddings) and structural (n-gram) 
features was maintained via the hyperparameter α set at 0.5. 

Table I summarizes performance across all methods, 
demonstrating clear variations among datasets. Specifically, 
the Custom Kernel Function achieved the highest accuracy 
(0.7344) and F1-score (0.6383) on GPT-3.5-enhanced texts 
(Dataset D1). Conversely, the Transformer-Guided N-gram 
Selection method exhibited superior performance for GPT-4-
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enhanced texts (Dataset D2), achieving an accuracy of 0.9016 
and an F1-score of 0.8500. These results highlight the 

effectiveness of integrating structural and semantic textual 
features in MGT classification. 

 

TABLE I.  COMPARATIVE PERFORMANCE (PRECISION, RECALL, F1-SCORE, ACCURACY) OF BASELINE AND PROPOSED METHODS ON EIGHT DATASETS 
(D1–D8). 

 Method Precision Recall F1 Accuracy 
Text 

enhanced 
using 

GPT-3.5  
(Dataset 

D1) 

Basic String 
Kernel 

0.6190 0.5000 0.5532 0.6719 

Attention-
Augmented 

Kernel 

0.6087 0.5385 0.5714 0.6719 

Error Pattern 
Analysis 

0.5769 0.5769 0.5769 0.6563 

Transformer-
Guided N-

gram 
Selection 

0.5417 0.5000 0.5200 0.6250 

Custom 
Kernel 

Function 

0.7143 0.5769 0.6383 0.7344 

LLM 0.3478 0.3077 0.3265 0.4844 
 

Text 
enhanced 

using 
GPT-4  

(Dataset 
D2) 

Basic String 
Kernel 

0.7500 0.7143 0.7317 0.8197 

Attention-
Augmented 

Kernel 

0.7778 0.6667 0.7179 0.8197 

Error Pattern 
Analysis 

0.7368 0.6667 0.7000 0.8033 

Transformer-
Guided N-

gram 
Selection 

0.8947 0.8095 0.8500 0.9016 

Custom 
Kernel 

Function 

0.7619 0.7619 0.7619 0.8361 

LLM 0.7222 0.6190 0.6667 0.7869 
 

Text 
enhanced 

using 
DeepSeek 
(Dataset 

D3) 

Basic String 
Kernel 

1 0.555556 0.714286 0.916667 

Attention-
Augmented 

Kernel 

1 0.555556 0.714286 0.916667 

Error Pattern 
Analysis 

1 0.555556 0.714286 0.916667 

Transformer-
Guided N-

gram 
Selection 

1 1 1 1 

Custom 
Kernel 

Function 

1 0.777778 0.875 0.958333 

LLM 1 1 1 1 
 

Text 
enhanced 

using 
Kimi  

(Dataset 
D4) 

Basic String 
Kernel 

0.96296 1 0.981132 0.984848 

Attention-
Augmented 

Kernel 

0.962963 1 0.981132 0.984848 

Error Pattern 
Analysis 

0.962963 1 0.981132 0.984848 

Transformer-
Guided N-

gram 
Selection 

1 1 1 1 



Custom 
Kernel 

Function 

1 1 1 1 

LLM 1 1 1 1 
 

Text 
generated 

using 
GPT-3.5  
(Dataset 

D5) 

Basic String 
Kernel 

0.88 1 0.93617 0.95 

Attention-
Augmented 

Kernel 

0.88 1 0.93617 0.95 

Error Pattern 
Analysis 

0.814815 1 0.897959 0.916667 

Transformer-
Guided N-

gram 
Selection 

0.956522 1 0.977778 0.983333 

Custom 
Kernel 

Function 

0.88 1 0.93617 0.95 

LLM 0.956522 1 0.977778 0.983333 
 

Text 
generated 

using 
GPT-4  

(Dataset 
D6) 

Basic String 
Kernel 

0.88 1 0.93617 0.95 

Attention-
Augmented 

Kernel 

0.88 1 0.93617 0.95 

Error Pattern 
Analysis 

0.814815 1 0.897959 0.916667 

Transformer-
Guided N-

gram 
Selection 

0.956522 1 0.977778 0.983333 

Custom 
Kernel 

Function 

0.88 1 0.93617 0.95 

LLM 0.956522 1 0.977778 0.983333 
 

Text 
generated 

using 
DeepSeek 
(Dataset 

D7) 

Basic String 
Kernel 

1 1 1 1 

Attention-
Augmented 

Kernel 

1 1 1 1 

Error Pattern 
Analysis 

1 1 1 1 

Transformer-
Guided N-

gram 
Selection 

1 1 1 1 

Custom 
Kernel 

Function 

1 1 1 1 

LLM 1 1 1 1 
 

Text 
generated 

using 
Kimi  

(Dataset 
D8) 

Basic String 
Kernel 

0.979167 1 0.989474 0.989362 

Attention-
Augmented 

Kernel 

0.959184 1 0.979167 0.978723 

Error Pattern 
Analysis 

0.979167 1 0.989474 0.989362 

Transformer-
Guided N-

gram 
Selection 

1 1 1 1 

Custom 
Kernel 

Function 

1 1 1 1 



LLM 1 1 1 1 

Datasets enhanced by DeepSeek (D3) and Kimi (D4) 
showed exceptionally high performance across all evaluated 
methods. Notably, Transformer-Guided N-gram Selection and 
LLM methods achieved perfect scores in precision, recall, F1-
score, and accuracy, demonstrating strong capability in 
distinguishing AI-enhanced content. The Custom Kernel 
Function also exhibited nearly flawless results. 

For datasets containing fully AI-generated texts (D5–D8), 
detection performance remained consistently high across all 
methods. Transformer-Guided N-gram Selection and LLM 
methods particularly excelled, delivering perfect or near-
perfect scores, especially for GPT-generated texts (D5, D6). 
These findings underscore the effectiveness of integrating 
semantic transformer embeddings with structural n-gram 
features. The Custom Kernel Function maintained robust, 
balanced performance, highlighting the benefits of its hybrid 
semantic-structural design. 

Transformer-Guided N-gram Selection emerged as 
particularly effective, emphasizing the significance of tailored, 
transformer-based strategies in accurately identifying 
machine-generated text. 

A. Hyperparameter Optimization 
To ensure optimal classification performance, we 

conducted systematic hyperparameter tuning using an 
extensive grid search. Our classification pipeline included 
character-level n-gram feature extraction (via 
CountVectorizer), normalization (using StandardScaler), and 
a polynomial-kernel SVM. We explored various n-gram 
ranges, polynomial degrees, and regularization values (C), 
selecting the best configuration based on mean F1-score 
through five-fold cross-validation. 

The optimal configuration was identified as an n-gram 
range of (2,5), a polynomial kernel of degree 2, and a 
regularization parameter of C = 10. This setup effectively 
captured underlying structural patterns while preserving both 
generalization capability and computational efficiency. The 
findings highlight the critical role of meticulous 
hyperparameter tuning in improving the accuracy and 
robustness of models designed for detecting machine-
generated text. 

 

IV. DISCUSSION 
The experimental results provide clear evidence 

supporting the effectiveness of hybrid methods integrating 
semantic transformer embeddings with structural n-gram 
features in detecting various forms of AI-generated and AI-
enhanced texts. Specifically, the Custom Kernel Function 
excelled on GPT-3.5-enhanced texts (Dataset D1), effectively 
capturing nuanced linguistic alterations introduced by AI 
enhancements. Similarly, Transformer-Guided N-gram 
Selection significantly outperformed other methods on GPT-
4-enhanced texts (Dataset D2), benefiting from aligning 
structural extraction with transformer tokenization, thus 
improving semantic representation and detection accuracy. 

For texts enhanced using DeepSeek (D3) and Kimi (D4), 
both Transformer-Guided N-gram Selection and Custom 
Kernel Function methods achieved exceptionally high 
performance, underscoring their reliability in identifying AI-

enhanced content. The fully AI-generated texts (Datasets D5–
D8) consistently yielded near-perfect detection results across 
methods, particularly with Transformer-Guided N-gram 
Selection and the LLM-based baseline, indicating distinct 
identifiable features in purely synthetic texts. 

Computational analyses revealed significant efficiency 
advantages of the Transformer-Guided N-gram Selection and 
Custom Kernel Function methods, both demonstrating linear 
computational complexity (O(Nd) and O(Nd)+O(ND), 
respectively). In contrast, purely structural methods exhibited 
quadratic complexity and slower execution speeds, 
highlighting the computational benefits of the proposed 
hybrid methods. These results emphasize the practical 
advantages of tailored transformer-guided and hybrid kernel-
based approaches, which effectively balance accuracy and 
computational efficiency, making them ideal for real-time and 
large-scale detection scenarios. 

 

V. CONCLUSION 
This study introduces and rigorously evaluates a novel 

hybrid framework that combines the strengths of traditional 
string kernels with modern transformer-based embeddings to 
enhance the detection of AI-generated text. Central to our 
approach are two key innovations: Transformer-Guided N-
gram Selection, which leverages contextual embeddings to 
inform the selection of meaningful textual patterns, and a 
Custom Kernel Function designed to capture nuanced 
syntactic and semantic differences between human and 
machine-generated text. These components work 
synergistically to improve both classification accuracy and 
computational efficiency when compared to baseline and 
state-of-the-art methods. 

Our experimental design encompassed a broad spectrum 
of generative AI systems, including GPT-3.5, GPT-4, 
DeepSeek, and Kimi, to ensure a comprehensive evaluation 
across diverse model architectures and output styles. The 
results consistently demonstrated the robustness, scalability, 
and generalizability of our proposed framework. In addition, 
we conducted extensive hyperparameter optimization tuning 
kernel parameters, regularization strengths, and embedding 
configurations to underscore the practical importance of 
model calibration in real-world detection tasks. Our findings 
confirm that the interplay between symbolic and neural 
representations can yield significant gains in both detection 
precision and interpretability. 

This study offers a promising direction for hybrid 
approaches to text authenticity detection. By bridging 
symbolic pattern recognition and contextual deep learning, 
our method sets the stage for more accurate, scalable, and 
explainable solutions in the ongoing challenge of 
distinguishing human-authored content from machine-
generated text. 

Despite these contributions, the study is not without 
limitations. The primary corpus consisted of scientific 
abstracts, which while structurally rich, may not fully 
represent the stylistic diversity found in other textual domains 
such as creative writing, informal discourse, or multilingual 
social media posts. This potentially restricts the cross-domain 
applicability of our model. Moreover, the human-written texts 



used as baselines were largely drawn from pre-transformer-
era documents, which may differ stylistically and syntactically 
from current human writing that often mimics or responds to 
AI-generated content. Another limitation lies in the 
dependency on BERT embeddings; while effective, they may 
not capture the full spectrum of linguistic nuance available in 
more recent or specialized transformer architectures. Our 
exploration of the hyperparameter space, though systematic, 
also remained bounded by computational constraints. 

Looking ahead, future research should aim to overcome 
these limitations through several avenues. First, expanding the 
dataset to include a richer variety of genres such as news 
articles, user-generated content, academic essays, and 
dialogue transcripts will enhance the ecological validity and 
generalization capability of detection models. Second, 
incorporating alternative or ensemble transformer models, 
such as RoBERTa, DeBERTa, and multilingual transformers 
like XLM-R, could further improve performance across 
different linguistic contexts. Third, ensemble strategies that 
combine the outputs of multiple classifiers may increase 
robustness against evolving AI-generated text styles and 
adversarial examples. Importantly, future efforts should also 
focus on enhancing model interpretability. The integration of 
explainable AI (XAI) methodologies such as attention 
visualization, saliency maps, and rule-based post hoc 
explanations will be crucial for fostering user trust and 
ensuring ethical deployment in sensitive domains like 
education, journalism, and policy. 
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