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Abstract:
This paper studies the stability of perturbed continuous-time

Markov chains (CT-MCs) by establishing stability criteria and ro-
bustness indicators. The robust stability criteria are derived from
the spatial relationships between reachable sets and invariant sub-
sets. Moreover, a robustness indicator is formulated to quantify
the ability of each transition to resist perturbations affecting the
stability, where lower values signify more critical transitions. Fi-
nally, a biological case study demonstrates the applicability of the
theoretical result. This framework not only facilitates stability as-
sessments for perturbed CT-MCs but also identifies critical tran-
sitions, the monitoring of which can enhance system resilience.
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1. Introduction

Continuous-time Markov chains (CT-MCs) represent a fun-
damental class of stochastic processes characterized by state
transitions occurring in continuous time while satisfying the
Markov property [1]. The process is uniquely defined by its
transition rate matrix (TRM), also known as the infinitesimal
generator [2], where the off-diagonal elements represent state
transition rates and the diagonal elements enforce conserva-
tion conditions. Unlike discrete-time systems, CT-MCs directly
model the intrinsic timing of events through transition rates
rather than stepwise probabilities [3]. A CT-MC achieves er-
godicity when there exists a unique stationary distribution that
remains invariant under the time evolution of the system [4].

The system reaches stability when its probability distribution
converges to this stationary distribution, indicating that the in-
flow and outflow probabilities are equilibrated for every state
[5]. This steady-state distribution has profound physical in-
terpretations: in chemical kinetics, it corresponds to chemical
equilibrium concentrations [1]; in queueing theory, it represents
steady-state service rates [6]; in gene regulatory networks, it
characterizes long-term gene expression patterns that are typ-
ically associated with healthy cellular states, while deviations
may lead to disease progression [7–9].

Functional perturbations in CT-MCs typically manifest as
modifications to transition rates (e.g., due to environmental
changes or mutations), which can potentially disrupt equilib-
rium distributions. For example, in gene regulatory networks,
perturbations may arise from protein binding rate modifica-
tions or enzymatic activity shifts, leading to redefined steady-
state distributions [10]. Similar concepts have been studied for
Boolean networks, where perturbations modify logical update
rules [10]. These binary logical systems admit a discrete-time
Markov decision process representation [11], with dynamics
satisfying the Markov property. In [12], a series of robust sta-
bilization conditions is derived for perturbed Boolean control
networks, requiring either 1) spatial separation between per-
turbed and controlled blocks, 2) accelerated convergence, or 3)
unreachability of perturbed states. Recent extensions consider
edge removal and edge sign switch, with stability criteria de-
rived from reachability matrices [13]. However, current frame-
works for both CT-MCs and Boolean networks lack a quanti-
tative metric for edge/transition robustness and a determination
criterion for critical edges that govern the system stability.

To effectively design resilient systems, it is essential to char-



acterize how transition perturbations affect the stability of CT-
MCs. In this work, we formally define robust stability as the
ability of CT-MCs to maintain their stationary distributions
when subjected to transition perturbations, particularly focus-
ing on the case where the outgoing transition is redirected. In
this context, we develop a systematic framework for quantify-
ing the robust stability of CT-MCs. This framework involves
calculating the reachable set to the target state, establishing ro-
bust stability criteria based on the spatial relationship between
invariant sets and reachable sets, and finally providing a robust-
ness indicator for each transition. In particular, this framework
develops an approach for identifying critical transitions, espe-
cially those serving as topological bridges between network
components, where perturbations may lead to system destabi-
lization. By monitoring these critical transitions, we can iden-
tify potential vulnerabilities and enhance system resilience.

The remainder of this paper is organized as follows: In Sec-
tion 2, the robust stability problem of perturbed CT-MCs is
formulated. Section 3 presents the criteria for robust stability
in CT-MCs, and Section 4 develops the robustness indicator.
An example to illustrate the robustness analysis process is pre-
sented in Section 5, followed by the conclusion in Section 6.

2 Preliminaries

CT-MCs are mathematical models that are used to describe
systems that transition between a finite number of states over
continuous time. They are characterized by the following key
components:

1) State Dynamics: The state of the system at time t is
represented by the continuous-time homogeneous Markov pro-
cess x(t) over the finite state space Dn := {1,2, . . . ,n}, which
evolves according to the transition probability matrix (TPM)
P(t). The matrix elements are defined as

[P(t)]i, j := Pr{x(τ + t) = i | x(τ) = j}, i, j ∈ Dn, (1)

with the initial condition P(0) = In, where τ ≥ 0 indicates a
specific initial time, and In is the n×n identity matrix.

2) Homogeneous Property: CT-MCs exhibit homogeneity,
meaning that the TPM remains unchanged over time:

P(t + τ) = P(t)P(τ), ∀ t,τ ≥ 0.

In this equation, P(t) represents the TPM at time t, and P(τ)
denotes the TPM over a time interval τ . The equality indi-
cates that the probabilities of transitioning between states de-
pend solely on the length of the time interval, rather than the
specific time at which the transition occurs. This homogeneity

property facilitates the derivation of long-term behaviors, such
as stationary distributions, which are essential for understand-
ing the equilibrium states of the Markov process.

3) Transition Rate Matrix (TRM): The TRM, denoted as Q,
is defined as the limit of the derivative of the TPM:

Q := lim
t→0+

Ṗ(t) ∈ Pn×n. (2)

It satisfies [Q]i,i ≤ 0 for all i ∈ Dn, [Q]i, j ≥ 0 for all i, j ∈ Dn
with i ̸= j, and ∑i∈Dn [Q]i, j = 0 for all j ∈ Dn.

4) Dynamics of the Probability Distribution Vector (PDV):
Let p(t) ∈ Pn represent the PDV for the state x(t):

[p(t)]i = Pr{x(t) = i}, ∀ i ∈ Dn,

The evolution of the PDV is governed by the ordinary differen-
tial equation: {

ṗ(t) = Qp(t),
p(0) = p0,

(3)

where p0 ∈ Pn is the initial PDV. The solution to this system
can be expressed as

p(t; p0) = eQtp0,

linking the time evolution of the PDV directly to the TRM Q.
Thus, we refer to “CT-MC {Q}” as the CT-MC with TRM Q.

5) Network Structure: The network structure of a CT-MC is
represented by its transition rate graph (TRG), denoted by a di-
rected graph G = (Dn,E ) with E = {(i, j) ∈Dn ×Dn | [Q] j,i >
0}. Each arc in G provides insight into the information flow
within the CT-MC, such as flow direction (i.e., each arc (i, j)
indicates that the system can transition from state i to state j at
a rate defined by [Q] j,i) and connectivity (i.e., the presence or
absence of arcs helps to understand the connectivity and acces-
sibility of the states within the network).

6) Stability: The asymptotical stability of CT-MC {Q} to
state α ∈ Dn refers to the CT-MC starting from any state is
reachable to state α and will not be transferred to other states.
Here, we present the definitions of equilibrium point and sta-
bility for CT-MC {Q}.

Definition 2.1 (See [3]). State α ∈ Dn is said to be an equilib-
rium point of CT-MC {Q} if

Pr{x(t;x0) = α | x0 = α}= 1, ∀ t ≥ 0. (4)

Definition 2.2 (See [3]). CT-MC {Q} is said to be asymptoti-
cally stable to α ∈ Dn, or simply α-stable, if

lim
t→+∞

Pr{x(t;x0) = α}= 1, ∀ x0 ∈ Dn. (5)



3. Robust Stability of CT-MCs

Transition perturbation in CT-MCs refers to the alterations
in transition rates that can influence the dynamics and stability
of the system. For instance, in communication networks, varia-
tions in traffic load or failures of network links can be modeled
as transition perturbations, which affect the flows of informa-
tion and the overall performance of the network. Based on the
stability definition of CT-MC {Q}, we precisely define transi-
tion perturbation and robust stability as follows.

Definition 3.1. CT-MC {Q} is said to undergo a transition per-
turbation, if a transition (i, j) ∈ E is altered to a new transition
(i, j′)∈Dn×Dn. This perturbation is denoted as (i, j); (i, j′)
and is defined as

∆Q = ∆Q(i, j′)−∆Q(i, j),

with ∆Q(i,k) := [Q] j,i(ek,ne⊤i,n − ei,ne⊤i,n), k = j, j′, where e·,n is
the standard basis vector. The resulting CT-MC is expressed as
CT-MC {Q′} with Q′ = Q+∆Q.

Definition 3.2. Given an α-stable CT-MC {Q}, it is said to be
robustly stable under perturbation (i, j); (i, j′) if the resulting
CT-MC {Q′} satisfies the stability condition (5).

Regarding α ∈ Dn, we define the l-step reachable set to α

iteratively as follows:

R[l] :=


{

i ∈ Dn\
l−1⋃
k=1

R[k] | [Q] j,i > 0, j ∈ R[l −1]
}
, l > 0

{α}, l = 0.

Notably, if there exists an integer L > 0 such that

L⋃
k=1

R[k] = Dn, (6)

then CT-MC {Q} achieves asymptotical α-stability. Hereafter,
we define l(i) as the index of the reachable set to which state i
belongs, and denote L⋆ as the minimal integer such that equality
(6) holds.

Next, regarding each state i ∈ Dn, we define the vector to
collect states in its preceding reachable sets and its reachable
sets by

r(i) := ∑

k∈
l(i)⋃
r=0

R[r]

e⊤k,n − e⊤i,n. (7)

Furthermore, we define the reachability matrix by

R(i, j) :=
n−∥r(i)∥0

∑
l=1

(
Q−∆Q(i, j)

)l
. (8)

Notably, if j ̸∈ R[l(i)− 1], then there exists a directed path
from i through a state j̃ ∈ R[l(i)− 1] to α . This ensures the
robust α-stability of CT-MC {Q}. Thus, we will focus on the
case where j ∈ R[l(i)−1], that is, r( j) = r(i)−1.

Theorem 3.1. Given CT-MC {Q} under perturbation (i, j);
(i, j′) with j ∈ R[l(i)−1], it is robustly α-stable if and only if

j′ ∈O(i, j)c, (9)

where O(i, j) :=
{

k ∈ Dn | Colk
(
R(i, j)

)
∈ null

(
r(i)

)}
with

Colk(·) being the kth column of the argument matrix.

Proof. Under perturbation (i, j) ; (i, j′) with l( j) = l(i)− 1,
there are two possible positions for j′: one is l( j′)≤ l(i) (illus-
trated in Case 1 of FIGURE 1); the other is l( j′) > l(i) (illus-
trated in Cases 2 and 3 of FIGURE 1).

FIGURE 1. Three cases of perturbation (i, j); (i, j′).

First, we prove the sufficiency by assuming j′ ∈ O(i, j)c,
which implies

j′ ∈
{

k ∈ Dn |
〈
r(i),Colk

(
R(i, j)

)〉
̸= 0

}
.

If i ∈ O(i, j)c, meaning r(i) ·Coli
(
R(i, j)

)
̸= 0, then one has

j′ ∈
l(i)⋃
r=0

R[r]\{i} and
(
Q − ∆Q(i, j)

)
j′,i > 0 as in Case 1 of

FIGURE 1. It implies the existence of a directed path from
j′ to α . If i ∈ O(i, j) but j′ ∈ O(i, j)c, then there exists a state

i′ ∈
l(i)⋃
r=0

R[r]\{i} such that
[

∑
L⋆−∥r(i)∥0−1
l=1 (Q−∆Q(i, j))l

]
i′, j′

>

0 and
[

∑
l(i′)
l=1(Q−∆Q(i, j))l

]
α,i′

> 0. Indicatively, there exists

a directed path from i to j′, then to i′, and finally to α , with a
length less than L⋆−∥r(i)∥0 + l(i′), as illustrated in Case 3 of
FIGURE 1. As a result, the robust α-stability is achieved.

Next, the necessity is proved by contradiction. Assume that



(a) Interface overview (b) Network visualization (c) Transition analysis visualization

FIGURE 2. Robustness Analyzer consists of four main regions. The Input Matrix Region (A) allows users to input the transition rate matrix, with the
target state α specified, along with buttons to visualize the graph or reset the interface. Network Visualization Region (B) displays the network structure.
When the ‘Analyze’ button is clicked, Transition Analysis Visualization Region (C) highlights the critical transitions in red with their robustness indicator
values labeled. Upon clicking ’Rank Transitions’, Redundant Transitions Region (D1) shows the transitions with the indicator value below 1, while Critical
Transitions Ranking Region (D2) lists the remaining transitions sorted by their indicator values in ascending order.

this CT-MC {Q} is robustly α-stable but j′ ∈O(i, j). Note that

O(i, j) =
{

k ∈ Dn | r(i) ·Colk
(
R(i, j)

)
= 0

}
=
{

k ∈ Dn | r(i) ·Colk
(
Q−∆Q(i, j)

)n−l
= 0,∀l ∈ [0,∥r(i)∥0]

}
.

Let the sequence of the states succeeding i be given by j0 = i→
j1 → ·· · → jk → ·· · → j∥r(i)∥0 , where

jk ∈
{

ς ∈ Dn | e⊤ς ,nColi
(
Q−∆Q(i, j))k > 0

}
,k ∈ [0, |O(i, j)|].

It indicates the existence of subset O(i, j) ∈
L⋆⋃

r=l(i)+1
R[r]∪{i}

such that jk ∈O(i, j) for all k ∈ [0, |O(i, j)|], as Case 2 in FIG-
URE 1. Consequently, we have

lim
t→+∞

Pr{x(t; jk) ∈O(i, j)}= 1, ∀ jk ∈O(i, j). (10)

Thus, according to Definition 2.2, the perturbed CT-MC {Q′}
cannot be asymptotically stable to α . Consequently, the orig-
inal CT-MC {Q} is not robustly α-stable, leading to a contra-
diction. Therefore, the proof is complete.

Clearly, when O(i, j) ̸= /0, perturbations to (i, j) are possible
to destabilize this CT-MC {Q}. In contrast, when O(i, j) = /0,
this CT-MC {Q} achieves robust α-stability against arbitrary
perturbations of the form (i, j); (i, j′). Therefore, we obtain
the following proposition.

Proposition 3.1. CT-MC {Q} is robustly α-stable under per-
turbation on (i, j) if and only if

null
(
r(i)

)
∩Col

(
R(i, j)

)
= /0. (11)

Remark 3.1. If O(i, j) =
L⋆⋃

r=l(i)+1
R[r]∪{i}, the state transition

(i, j) acts as a bridge connecting two regions: one rooted at
i and the other rooted at α . If we replace (i, j) with (i, j′),
we may sever the connection between these two regions, thus
isolating α from the influence of i. This disconnect can lead to
a loss of stability, as the path to α is compromised.

4. Robustness Assessment

In this section, we quantitatively estimate the robustness of
a given CT-MC {Q}. According to Proposition 3.1, the robust
α-stability of CT-MC {Q} is guaranteed if condition (11) holds
for all i ∈ Dn. Otherwise, it is crucial to assess the importance
of each transition (i, j) ∈ G , as the removal of any such transi-
tion could undermine the robust α-stability of CT-MC {Q}.

To proceed, we introduce a robustness indicator for transition
(i, j) ∈ G as follows:

inx(i, j) =
n−|O(i, j)|

n
. (12)

A larger value of inx(i, j) indicates a higher robustness of the
transition (i, j). In particular, if O(i, j) = /0, one has inx(i, j) =
1, implying that the perturbation on (i, j) will not affect the α-
stability of CT-MC {Q}.

Based on the above theoretical results, we can develop a net-
work robustness analyzer, illustrated by an interactive visual-
ization interface as FIGURE 2(a). By entering the network,
the embedded algorithms within the interface will visualize the
results of the robustness analysis.



(a) Robustness indicator (b) Critical transition (16,8) (c) Critical transition (15,7) (d) Critical transition (2,10)

FIGURE 3. TRG of p53-Mdm2 Signaling Model.

5. Illustrative Example: p53-Mdm2 Signaling

Here, we conduct a robustness analysis of the model for the
p53 gene response to DNA damage, known as the p53-Mdm2
signaling network [5]. This logic model consists of four vari-
ables: p53 ∈ {0,1,2}, Mdm2C ∈ {0,1}, Mdm2N ∈ {0,1}, and
Dam ∈ {0,1}. According to [3, 14], the transition graph of
the p53-Mdm2 signaling network has 24 states, as illustrated in
FIGURE 3(a), with each state represented by

x= 8(2−p53)+4(1−Mdm2C)+2(1−Mdm2N)+(1−Dam).

Especially, state 22 serves as the target state, indicating the sit-
uation where nuclear Mdm2 is on while the rest are off.

In this setting, 22-reachable sets can be calculated as follows:

R[0] = {22}; R[1] = {14,18,24}; R[2] = {6,10,20};
R[3] = {2,5,12}; R[4] = {1,4}; R[5] = {3,8};

R[6] = {7,11,16}; R[7] = {15,19}; R[8] = {13,23};
R[9] = {9,21}; R[10] = {17}.

States within the same reachable set are represented in the same
color in FIGURE 3(a). In this case, L⋆ = 10. Next, according
to Theorem 3.1, we calculate the invariant subset O(i, j) for
i ∈ D24\{22} and j ∈ R[l(i)−1] as recorded in TABLE 1.

Next, we consider the perturbation on transition (16,8),
which represents a critical transition since O(16,8) = {16} ≠ /0
as shown in FIGURE 3(b). According to Theorem 3.1, with
α = 22 here, if j′ ̸= 16, the resulting CT-MC {Q′} achieves 22-
stability. Conversely, if j′ = 16, the resulting CT-MC {Q′} fails
to achieve 22-stability, indicating that the original CT-MC {Q}
is not robustly 22-stable under perturbation (16,8); (16,16).
Furthermore, we examine the perturbation on transition (15,7).

TABLE 1. Invariant state subset O(i, j) in state set
L⋆⋃

r=l(i)+1
R[r]∪{i}.

(i, j) O(i, j) (i, j) O(i, j) (i, j) O(i, j) (i, j) O(i, j)
(24,16) /0 (24,22) /0 (18,22) {18} (14,16) /0
(14,22) /0 (20,24) /0 (20,18) /0 (20,12) /0
(10,18) /0 (10,14) /0 (6,2) /0 (6,8) /0

(6,14) /0 (2,10)
{1,2,4,7,8,9,11,13,
15,16,17,19,21,23} (12,4) /0 (12,10) /0

(12,16) /0 (5,1) /0 (5,6) /0 (5,7) /0
(5,13) /0 (1,2) /0 (1,9) /0 (4,2) {4,8,16}
(3,1) /0 (3,4) /0 (8,4) {8,16} (16,8) {16}
(7,3) /0 (7,8) /0 (11,3) /0 (11,9) /0

(11,15) /0 (15,7) {9,13,15,17,21,23} (19,11) /0 (19,17) /0
(19,23) /0 (23,15) {9,17,21} (13,15) /0 (13,21) /0
(9,17) /0 (9,13) /0 (21,23) {17,21} (17,21) {17}

As can be seen from FIGURE 3(c), if j′ ∈O(15,7), the stabil-
ity of CT-MC {Q} will be compromised; otherwise, the stabil-
ity will be maintained. Finally, we analyze the most severe case
where the transition (2,10) is perturbed. As shown in FIGURE
3(d), if j′ ∈ O(2,10), the reachability from states in O(2,10)
to states in D24\O(2,10) will be lost, leading to the instability
of CT-MC {Q}. This phenomenon corroborates the scenario
mentioned in Remark 3.1, demonstrating that transition (2,10)
acts as a bridge. Besides, it reveals that the larger the invariant
state set O(i, j), the greater the possibility that the perturbation
on the transition (i, j) will affect the stability of CT-MC {Q}.

To assess the criticality of transition perturbations, we cal-
culate the robustness indicator for each transition (i, j) ∈ G ,
as annotated on the arcs in FIGURE 3(a). For example, we
consider the case of perturbing transition (3,4). This yields
r(3) = (1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1)

and R(3,4) = ∑
13
l=1

(
Q+∆Q(3,4)

)l
, which results in

null
(
r(3)

)
∩Col

(
R(3,4)

)
= /0.



According to Proposition 3.1, CT-MC {Q} is robustly 22-stable
under perturbation on (3,4), consistent with the robustness in-
dicator inx(3,4) = 1. As shown in FIGURE 3(a), transitions
with higher inx(i, j) values exhibit stronger robustness. Specif-
ically, when inx(i, j) = 1, perturbation on transition (i, j) has
no effect on the stability of CT-MC {Q}.

6. Conclusions

This paper has established a robust stability analysis frame-
work for CT-MCs under transition perturbations, including the
establishment of stability criteria and the formulation of robust-
ness indicators. In particular, the robustness indicator has quan-
tified the significance of each transition to system stability, al-
lowing for the identification of critical transitions whose per-
turbations are most likely to destabilize the system. Finally, we
have demonstrated the applicability of the framework through
a case study on the p53-Mdm2 signaling network.
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