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Abstract:
The petroleum supply chain is a sequential process involv-

ing various steps. Operational research (OR) is the traditional
approach to resolve resource scheduling problem in such a sys-
tem with complicated structure. However it is time consuming
due to enormous amount of variables. In this paper we have
managed to build a multi-agent reinforcement learning (RL)
environment to simulate decision-making processes, which em-
ploys a multi-strategy approach to optimize agent interactions
while leveraging value models to enable agents to adapt and
improve their actions. Through a series of simulated scenar-
ios, we demonstrate the effectiveness of the proposed multi-
strategy framework in addressing complex tasks within multi-
agent systems. The framework is designed to maximize overall
performance by employing tailored RL strategies.
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1. Introduction

The petroleum supply chain is a complicated sequential
process that involves various steps that are often sepa-
rated into three main segments: upstream where crude oil
exploration and production takes place, midstream where
crude oil is refined in refineries and distributed to the stor-
age of refined oil, and downstream where refined oil is
sold [?]. Nowadays the resource scheduling problem in the
petroleum area has drowned in massive attention due to
complicated structure and considerable scale of the sys-
tem. Yet traditional approaches such as OR are computa-
tionally inefficient, especially for such a large model with
an enormous amount of variables.

To resolve the problem of OR methods, we turn to
constructing a simulation environment for the RL model
based on a multi-strategy framework while introducing the
concept of value model which reflects the value of inven-
tory of each storage with respect to the level of stocks.

As a result, we observe that the output of simulation
model meets the expectation of inventory trends, which is
logically reasonable according to our business experience.

2 Problem Definition and Algorithm

We aim to derive the simulation environment based on
multi-agent and multi-period sequential deduction frame-
work where the decision-making process of ”observation-
decision-execution-observation” is introduced. With the
inventory value model which makes the inventory level
trends conform to the business rules strategically oriented,
the allocation system with continuous improvement ability
is realized.

2.1 Task Definition

Due to profound stability of upstream business opera-
tion process, we mainly focus on the downstream which
starts from refined oil being produced in refinery, then
transported to transit depots, and finally retailed in sales
company. Given inventory level of each node (namely re-
fineries, transit depots, and sales companies) and monthly
production plan of refineries and sales plan of sales compa-
nies as input, we seek to simulate the downstream schedul-
ing process under the condition that the inventory level of
each node maintains in certain range steadily as our de-
sire while executing the operational plans smoothly. Ac-
cording to the topology network, each transportation is



uniquely defined by four elements: start node, end node,
transporting material, and shipping method, the oil can
only be delivered along the sequential stream.

2.2 Algorithm Definition

In the RL model, we construct the nodes as agents that
interact with the environment and make decisions based
on a multi-strategy framework, where each strategy deter-
mines shipment to the associated downstream depots. The
state space is defined as the union of static transportation
network, supply and demand, inventory level, as well as
a virtual value varying with the inventory level for each
node. The discrete action space is yield by different se-
lection of strategies, value models, and parameters that
affect the actions.

2.2.1 Variable Definition

Suppose there is a node j at state si, with v
(k)
j the k-

th value function representing the inventory level of node
j and pk the adjustable parameters of the strategy. The
shipment quantity vector from node j to all N downstream
nodes is aj = [aj1, a

j
2, . . . , a

j
N ]. Then the full action space

A
(j)
i for node j in state si is defined as formula 1.

A
(j)
i =

{
aj | aj = πk(si, v

(l)
j , pk),

k ∈ {1, . . . ,K}, l ∈ {1, . . . , L}
} (1)

where K and L are the total number of strategies and
value functions respectively. In this paper, K = 5 and
L = 4.

2.2.2 Reward Function

The reward function is developed to maximize the
change of total value from previous state to the next one.
The process is listed as follows.

• Consider a node j with associated value vj . The total
environment value at state si is given by formula 2.

V (si) =

n∑
j=1

v
(i)
j . (2)

• When an action a is taken, the environment transi-
tions from state si to state si+1, and each node up-
dates its value, leading to a new total value (formula

3)

V (si+1) =

n∑
j=1

v
(i+1)
j . (3)

• The reward function aims to maximize the change in
the total value as formula 4

R(si, a) = V (si+1)− V (si). (4)

• The agent is incentivized to choose actions that maxi-
mize R(si, a), i.e., actions leading to the greatest pos-
itive change in the environment value.

The Figure 1 illustrates how the simulation environment
takes actions:

Start: State si with values v
(i)
1 , . . . , v

(i)
n

Take action a

State transition si → si+1, update values

Compute reward R(si, a)

End: Maximize R(si, a)

FIGURE 1. State Transaction and Reward Computation

2.2.3 Multi-Strategy Framework

We use a multi-strategy framework where each strategy
determine generates different shipment scenarios based on
node status. The 5 strategies we use are listed below.

• Balanced strategy: evenly distributes the transporta-
tion volume to all eligible downstream nodes, i.e. the
shipment quantity from node i to all N downstream
node j is aj1 = aj2 = · · · ajN for all j ∈ {1, . . . , N}.

• Greedy strategy: gives priority to the downstream
node with the largest value difference for transporta-
tion to maximize the current value difference each
time, so as to achieve the purpose of global optimiza-
tion in gradual accumulation. This strategy leads to
find the downstream node j that maximize |vi − vj |
for j ∈ {1, . . . , N}.



• Balanced-weight strategy: calculate the shipments
based on allocation ratio and the actual remaining ca-
pacity of the depot using Softmax function. The cal-
culation process for node i with N downstream nodes
is as follows:

1. Calculate current inventory ratio as: ti = ci
mi

,
where ci and mi represents current inventory
and capacity respectively.

2. List all downstream nodes that satisfy vj >= vi,
and calculate value difference ∆vji = vi − vj for
j ∈ {1, . . . , N}.

3. Calculate remaining capacity based on current
inventory level and total capacity of each down-
stream nodes as: rj = mj−cj for j ∈ {1, . . . , N}.

4. Calculate total shipment quantity based on in-
ventory level:

tji = vi ×

( ∑N
j=1 rj∑N
j=1 mj

)
×min(ci,

N∑
j=1

rj) (5)

5. Calculate standardized value difference uj
i :

uj
i =

∆vji∑N
j=1 ∆vji

(6)

6. Calculate allocated shipment quantity by Soft-
max:

pji =
eu

j
i∑N

j=1 e
uj
i

(7)

7. The shipment quantity T j
i from node i to asso-

ciate downstream node j is

T j
i = min(tjip

j
i , rj) (8)

• Proportional allocation strategy: adopts the method
of direct allocation according to the inventory pro-
portion in the distribution process instead of Softmax
function compared to balanced-weight strategy. The
total shipment quantity is computed as

T j
i =

rit
j
i∑N

j=1 rj
(9)

which simplifies the allocation process while ensuring
reasonable transportation.

• Target strategy: adjusts the transportation volume
based on the target inventory ratio of each node.This
strategy allows us to fully control the inventory level
as the result of shipment activities. Same as before,
we assume shipment from node i to the jth down-
stream node and the calculation process is as follows:

1. Let ci, gi, hi, ei be current inventory, production,
sales, and expected inventory ratio of node i re-
spectively. Then we have equation 10 and 11.

di = ci + gi − eimi, (10)
qj = (mj − cj) + hj − (1− ej)mj (11)

where di is the delivery quantity of node i and
qj is the receiving quantity of node j.

2. The total shipment quantity of node i is

Ti = min

 ∑
j:vi<vj ,qj>0

qj , di

 (12)

3. Then we can allocate each shipment quantity
from node i to node j by

T j
i =

Tiqj∑
j:vi<vj ,qj>0 qj

(13)

3 Experiment

We mainly discuss the outcome of the experiments us-
ing balanced-weight strategy and linear value model with
different original inventory and parameter settings.

3.1 Settings

Take the data of an arbitrary month as an example, we
construct the RL model including 90 nodes, 2 types of
oil and more than 1000 routes in the transport network.
Monthly production and sales plans sum up to 50.

We use linear value model in the experiment as shown
in formula 14, with v as the inventory rate, v0 and v100 as
parameters representing values at empty and full inventory
respectively.

Value = (100− v)× (v0 − v100)

100
+ v100 (14)

In the experiment we set v0 = 0 for all nodes, and v100 =
1000 for refineries and transit depots, and v100 = 1500 for
sales companies.



3.2 Results

The following examples are using the same dataset ex-
cept subtle adjustments on a specific refinery (denoted R)
of interest.

3.2.1 Base Example

According to real operational data, the inventory ratio
at the beginning of the month is 65% and 50% for gasoline
and diesel respectively. With shipping threshold set to
2000 tons. Figure 2 shows the trend of inventory level
and value of refinery R through the whole month as the
simulation outcome. Due to shipping threshold, shipments
begin on the third day, then inventory level and value
oscillate in the opposite direction.

FIGURE 2. Trend of inventory level and value of refinery R
(Basic Example)

3.2.2 High-Initial-Inventory Example

Let the initial inventory of both gasoline and diesel be
100% with shipping threshold 1000 tons (Figure 3). It
can be seen that oil is delivered out of refinery R in a
very short time, decreasing the inventory to a reasonable
level and stabilized. The shipments are triggered relatively
more often compared to base example.

FIGURE 3. Trend of inventory level and value of refinery R
(High-Initial-Inventory Example)

3.2.3 Low-Initial-Inventory Example

Now change the initial inventory of both gasoline and
diesel to empty and keep shipping threshold unchanged
(Figure 4). It is obvious that transportation activities are
allowed when the inventory is low, and only begin until
sufficient quantities have been produced and accumulated.

FIGURE 4. Trend of inventory level and value of refinery R
(High-Initial-Inventory Example)

3.3 Discussion

Based on three examples illustrated in detail above, we
conclude that:

• The linear value model algorithm based on the current
business logic tends to stabilize the inventory within a
reasonable range. The stocks are quickly transferred
at high inventory level, and accumulated when the
inventory is low, so as to automatically adjust the
inventory level.

• The shipping threshold can affect the fluctuation
range of the inventory trend in a way that lower
threshold brings less inventory fluctuations hence flat-
ter pattern and vice versa.

• The BWSA strategy aims to narrow the gap between
all possible transportation volumes preventing the ex-
cessive proportion gap from causing some nodes un-
able to receive oil due to the too small transportation
volume.

4 Related Work

The structure of petroleum supply chain is particularly
critical due to the scale and global reach of operations.
Managing a complex and distributed crude oil supply
chain poses significant computational challenges, particu-
larly when using traditional OR algorithms. These meth-
ods, while powerful, often require extensive computational



resources and can suffer from long processing times, es-
pecially when dealing with large-scale, multi-echelon sys-
tems. The complexity of such algorithms increases ex-
ponentially with the number of nodes and the stochastic
nature of demand and lead times, often leading to sce-
narios where no feasible solution can be found within a
reasonable time frame. This makes them less practical for
real-time decision-making in dynamic supply chain envi-
ronments like those found in the crude oil industry.

To address these significant challenges, researchers in
the field of OR have explored various innovative meth-
ods. Edirisinghe and Almutairi [?] introduced a predictive
global sensitivity analysis (PGSA) approach to simplify
computational processes by creating structural equations
based on regression techniques while still providing near-
optimal solutions. Similarly, Sitek and Wikarek [?] pro-
posed a hybrid framework that combines mathematical
programming and constraint programming to optimize de-
cision problems in sustainable supply chain management.

However, existing research has largely focused on sim-
pler models. Previous studies have typically focused on
more straightforward two-echelon systems, where a cen-
tral warehouse supplies multiple retailers [?]. Hearnshaw
and Wilson [?] proposed Supply Chain Network Theory
that acknowledgs the significance of scale-free networks.
The exploration of the simulation model of pharmaceutical
supply chain in Morocco only explored the non-distributed
inventory system [?].

Despite the various advanced OR methods explored to
address the computational challenges in complex supply
chains, these approaches often remain limited by their
inherent complexity, extensive computation times, and
the exponential increase in difficulty as system scale and
stochastic factors grow. To address these challenges, more
simplified, yet effective, strategies such as the (R, Q) and
(S,s) inventory models have been adopted. These models
focus on optimizing inventory levels at individual nodes
within the supply chain, rather than attempting to op-
timize the entire network simultaneously. The (R, Q)
model, in particular, has been widely used in various in-
dustries for its simplicity and effectiveness in managing
inventory with uncertain demand, as demonstrated in the
context of two-echelon inventory systems [?].

5 Future Work

Current strategy system with value model is constructed
solely based on inventory, whereas other potential factors

should also be taken into serious consideration, such as
transportation duration, delivery cost, storage price, and
sales price, etc. The absence of these factors may account
for the current system’s inability to achieve the lowest pos-
sible cost.

Future research should investigate a wider range of
strategic frameworks and value models, along with diverse
configurations of parameters such as shipping thresholds.
The current classification method considers only the posi-
tional attribute of nodes in the supply chain, whether they
are upstream or downstream, without taking into account
their specific functional roles or business impact within
the network. A more refined node categorization could
be established to support the development of targeted al-
location strategies, value models, and parameter settings
thereby enhancing the overall effectiveness and precision
of the system.

6 Conclusion

This paper presents a RL simulation environment in the
area of petroleum supply chain based on multi-strategy
framework introducing value model to determine the best
approach that meet business rules. In consequence, the
model conforms to the business logic by analyzing three
examples. Further research on strategies and value models
is worth studying given current research progress.


