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Abstract: 
This paper presents a framework that facilitates 

human-AI collaboration more effectively. The framework 

allows multi-users and Artificial Intelligence (AI) to 

collaborate in the virtual reality (VR) space. The case study 

presented in this paper integrates machine learning (ML) and 

multi-user VR technology to enhance human-ML 

collaboration for breast cancer diagnosis using digital 

pathology. ML, particularly convolutional neural networks 

(CNNs), has played a crucial role in breast cancer detection in 

recent years by automating the identification of cancerous 

regions in Whole Slide Images (WSIs). These results can then 

be visualised within a VR environment, providing pathologists 

with an immersive and interactive platform that supports 

real-time collaboration between human experts and ML. The 

integration of ML and VR can improve diagnostic accuracy 

and foster collaborative decision-making among senior and 

junior pathologists, potentially leading to better patient 

outcomes. 
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1. Introduction 

AI has become a significant development area in many 

application domains. There has been a sharp increase in 

human-centred AI development in recent years especially 

focusing on better human interaction with the AI system [1]. 

An effective framework and platform are essential to 

facilitate human-AI collaboration in terms of interaction, 

user experience, XAI, and collaboration [2]. In this paper, 

we have chosen to feature the human-AI collaboration 

paradigm for breast cancer detection using digital pathology 

as a case study. Breast cancer is a significant health concern 

globally, posing a substantial threat to women’s lives [3]. 

Timely and accurate diagnosis is crucial for effective 

treatment and improving patient outcomes. Traditional 

diagnostic methods relying on pathological analysis are 

often time-consuming and prone to human error, especially 

when handling large datasets like Whole Slide Images 

(WSIs). To address the growing need for more precise and 

rapid diagnosis, exploring new technologies that can 

enhance pathologists’ capabilities is imperative [4]. 

In recent years, the field of machine learning (ML), 

particularly deep learning (DL), has emerged as a 

promising tool for automating and enhancing the accuracy 

of image recognition tasks, including medical diagnostics 

[5]. Convolutional Neural Networks (CNNs), a type of deep 

learning model, have shown remarkable success in 

identifying patterns and anomalies in medical images [6]. 

Studies have demonstrated the high accuracy levels that 

CNNs can achieve in detecting cancerous regions in WSIs, 

thereby supporting pathologists in making well-informed 

decisions [7]. 

The integration of VR technology in the medical field 

has garnered significant attention, offering immersive 

environments for training, simulation, and diagnostics. By 

combining VR with digital pathology, a novel approach 

emerges to enhance the diagnostic process, providing 

pathologists with a more intuitive and interactive platform 

to visualise high-resolution images. This integration has the 

potential to allow humans and ML to collaborate seamlessly 

in the virtual world to expedite diagnostic procedures and 

improve accuracy, ultimately leading to better patient 

outcomes. Furthermore, the implementation of a multi-user 

VR setup enables collaborative diagnostics, allowing 

multiple senior and junior pathologists to analyse data 

simultaneously with the assistance of ML, share insights, 

and collectively make informed decisions [8]. 

This paper proposes a human-AI collaboration 

framework that allows the strengths of ML and multi-user 

VR environments to improve the accuracy and efficiency of 

breast cancer detection. By leveraging the Camelyon16 

dataset, a CNN model is trained to identify cancerous 



 

 

regions in WSIs, and the results are visualised within a VR 

environment. The VR platform not only allows pathologists 

to interact with the diagnostic images but also facilitates 

real-time collaboration among multiple pathologists, 

thereby enhancing the decision-making process. 

2. Background 

2.1. Digital Pathology 

Research has shown that ML algorithms play a crucial 

role in developing effective predictive models for breast 

cancer detection and prognosis [7]. By leveraging these 

algorithms, researchers and physicians can enhance the 

accuracy of breast cancer diagnosis and prediction, 

ultimately aiding in early detection and treatment [9]. ML 

models can learn from extensive datasets of breast cancer 

cases and non-cancer cases to identify specific patterns and 

features indicative of the presence of breast cancer [10]. 

Models integrating ML can indeed significantly 

support pathologists in making more accurate and 

consistent diagnoses [11]. By combining digital pathology 

methods with advanced ML techniques, new digital cell 

image diagnostic features and algorithms can be developed, 

optimising cell classification and integrating diagnostic 

screening into the pathology workflow to aid in the 

diagnosis of various conditions, such as malignant 

lymphoma [11]. Further research is recommended to 

explore the efficiency of DL as an adjunct tool for 

histopathological diagnosis, potentially enhancing the 

accuracy of diagnosing neoplastic lesions [12]. The 

development of digital pathology and AI has indeed been 

instrumental in addressing various challenges related to 

pathological diagnosis and prognosis prediction [13]. 

2.2. Machine Learning in Pathology 

ML has rapidly become an essential tool in medical 

imaging, with applications ranging from image 

segmentation to disease prediction [14]. CNNs have been 

pivotal in these advancements, particularly in tasks 

involving image classification and object detection [15]. In 

the context of digital pathology, CNNs have been 

successfully employed to identify cancerous cells in WSIs, 

showcasing remarkable accuracy in diagnostic tasks [16]. 

One notable example demonstrating the potential of CNNs 

in detecting breast cancer metastases is the Camelyon16 

Grand Challenge, where machine-learning models 

surpassed human pathologists in certain diagnostic tasks, 

achieving higher accuracy rates in detecting small 

metastases that might be overlooked during manual 

examination [17]. These results underscore the significant 

impact of integrating CNNs into the diagnostic workflow to 

enhance the accuracy and efficiency of pathological 

analysis. 

However, the successful application of ML in 

pathology is not devoid of challenges [18]. The training of 

CNNs necessitates large, well-annotated datasets, which 

can be challenging to acquire [19]. Additionally, while 

CNNs excel at specific tasks, variations in image quality, 

staining techniques, and the complexity of medical images 

can impede their performance [20]. Addressing these 

challenges requires ongoing research into model 

optimisation, data augmentation techniques, and the 

seamless integration of ML with other diagnostic tools [21]. 

There is also an increasing desire to incorporate human into 

the loop of this detection and diagnosis cycle.  

2.3. Virtual Reality in Medical Applications 

VR has emerged as a powerful tool in medical 

education, training, and diagnostics, offering immersive 

experiences that traditional 2D displays cannot replicate 

[22]. In medical education, VR simulations provide a 

risk-free environment for students to practice surgical 

procedures, interact with 3D anatomical models, and gain 

hands-on experience, enhancing their learning outcomes 

[23]. Moreover, in diagnostics, VR has the potential to 

revolutionise the visualisation of medical images, enabling 

clinicians to explore data in a three-dimensional space, 

potentially leading to more accurate diagnoses [22]. 

In the realm of digital pathology, VR presents an 

alternative for pathologists to examine WSIs. By immersing 

pathologists in a virtual environment where they can 

manipulate and interact with high-resolution images, VR 

offers a more intuitive and immersive way to analyse 

pathology data. This immersive experience can potentially 

reduce the cognitive load associated with traditional 2D 

image analysis, enhancing diagnostic accuracy and 

efficiency. Furthermore, the integration of ML results into 

the VR environment allows pathologists to receive 

real-time feedback and suggestions from the model, further 

aiding in the diagnostic process [24]. 

2.4. Multi-User Virtual Reality Environments 

The collaborative potential of VR in medical 

diagnostics has garnered significant interest, offering 

multi-user environments where clinicians can share data, 

discuss findings, and make joint decisions [25]. In complex 

cases requiring input from multiple specialists sometimes, 

multi-user VR environments enable real-time interaction 



 

 

with data and each other, leading to more comprehensive 

analyses and better-informed decisions [25], [26], [27]. In 

the field of pathology, a multi-user VR environment could 

facilitate teams of pathologists to collaboratively analyse 

WSIs, leveraging the expertise and experience of each team 

member [28]. This collaborative approach allows 

pathologists to focus on different aspects of the tissue, 

enhancing the accuracy of diagnoses and expediting 

turnaround times, ultimately benefiting patient outcomes 

[28]. 

In the context of digital pathology, the utilisation of 

multi-user VR environments can revolutionise the way 

pathologists collaborate and analyse WSIs [29]. By 

enabling pathologists to work together in a virtual space, 

VR technology enhances the efficiency and accuracy of 

diagnostic processes, leading to more precise and timely 

diagnoses [30]. The integration of ML results into the VR 

environment further enhances the diagnostic capabilities of 

pathologists, providing real-time feedback and suggestions 

to aid in the decision-making process [31]. This 

collaborative approach not only improves diagnostic 

accuracy but also fosters a multidisciplinary approach to 

pathology, benefiting patient care and outcomes [32]. 

3. Methodology 

The methodology for this research is divided into 

several key components: data collection, pre-processing, 

model building, system development, testing, and 

post-processing. Each step is critical in creating a robust 

system that integrates ML with a multi-user VR 

environment for the diagnosis of breast cancer using WSIs. 

All these are necessary to demonstrate an effective 

human-AI collaboration framework as proposed in this 

paper. 

3.1. Data Collection 

The primary dataset used in this study is the 

“Camelyon16” dataset, which is well-regarded in the field 

of digital pathology for its comprehensive collection of 

WSIs (Fig. 1) specifically aimed at the detection of lymph 

node metastases in breast cancer patients. The dataset 

provided by Radboud University Medical Centre and the 

University Medical Centre Utrecht, where both universities 

are in the Netherlands, includes 399 WSIs, with 270 

designated for training and 129 for testing. 

In the dataset, the Training Set has 160 normal slides 

(no cancer) and 110 slides containing metastases, and the 

Testing Set has 80 normal slides and 49 slides containing 

metastases. These images are provided in a high-resolution 

format, allowing detailed examination of tissue samples. 

The corresponding XML files contain annotations that 

highlight the regions of interest (ROIs) where cancerous 

cells are located, providing a crucial resource for supervised 

ML. 

 

 

FIGURE. 1. An example of a metastatic region on the 

whole slide image (Bejnorji et al., 2016). 

3.2. Pre-Processing 

Pre-processing plays a vital role in preparing WSIs for 

ML by reducing their size while preserving essential 

diagnostic details. Given the large scale of WSIs, efficiently 

identifying and segmenting key areas is necessary to make 

data manageable. The process begins with ROI detection, 

where WSIs are converted from the RGB colour space to 

HSV to better distinguish colour information from 

luminance. A binary mask is then created to isolate tissue 

areas while eliminating the background. To refine the mask, 

morphological operations such as closing and opening are 

applied, followed by contour detection to accurately define 

the boundaries of the ROI. 

Once the ROIs are identified, they are divided into 

smaller 256x256 pixel patches for further analysis. These 

patches are categorised as either positive (containing 

cancerous cells) or negative (containing normal tissue). 

Extracting patches from both cancerous and non-cancerous 

areas ensures a balanced dataset, preventing bias in ML 

models. By systematically segmenting the WSIs, this 

approach enhances the efficiency of data processing while 

maintaining the integrity of diagnostic information. 

3.3. Model Building 

This study focuses on training a CNN to classify 

extracted patches as either cancerous or non-cancerous with 

high accuracy. Given the complexity and large size of WSIs, 

the pre-trained GoogLeNet architecture is chosen due to its 

strong performance in image classification tasks, including 

the Camelyon16 competition. Its deep structure and 

efficient design make it well-suited for handling the 

intricate features of medical imaging data. 



 

 

In addressing the challenge of a limited training 

dataset, transfer learning is applied. A pre-trained 

GoogLeNet model, which has already learned to recognise 

essential image features, is fine-tuned using the 

Camelyon16 dataset. This method speeds up the training 

process while improving accuracy by leveraging prior 

knowledge. Additionally, the final layers of GoogLeNet are 

modified to suit this specific classification task. The fully 

connected layer is adjusted to output two classes, positive 

(cancerous) and negative (non-cancerous), while the 

SoftMax layer is adapted to align with the binary 

classification requirement. 

Due to computational constraints, only a subset of the 

extracted patches is used for training. However, careful 

management of the training process ensures the model 

learns to distinguish between cancerous and non-cancerous 

tissue effectively. In enhancing robustness and 

generalisability, data augmentation techniques such as 

rotation, flipping, and scaling are applied. These 

augmentations help prevent overfitting and allow the model 

to perform well when analysing diverse histopathological 

images. 

3.4. System Development 

A major innovation in this study is the integration of 

the trained CNN model into a multi-user VR environment. 

This system is developed using Python, MATLAB, and 

Unity, with each platform contributing to different aspects 

of the architecture. The VR setup enables real-time 

interaction with WSIs, allowing multiple users to engage 

with diagnostic data collaboratively. The overall system 

architecture (Fig. 2) is designed to ensure seamless 

integration between the computational backend and the VR 

interface, facilitating efficient data visualisation and 

interaction. 

The hardware configuration consists of three primary 

components. A virtual machine is responsible for 

pre-processing, model training, and testing, featuring an 

Intel Xeon GPU, 32GB RAM, and Windows Server 2019 

OS. It runs essential ML tools, including Python 3.6.12 and 

MATLAB R2020b, to process large datasets effectively. A 

laptop functions as the Unity server, managing the VR 

environment and handling communication with the trained 

model. The Oculus Quest serves as the client device, 

enabling users to access the VR environment and interact 

with WSIs. The system is structured to support 

simultaneous multi-user access, where the Unity server 

hosts the VR interface. At the same time, the virtual 

machine executes backend processes, such as running the 

trained CNN model and generating heatmaps based on user 

queries. 

The VR environment, developed in Unity, incorporates 

custom plugins to enable real-time interaction with 

pathology data. It consists of two primary display 

planes—one showing the original WSI and another 

displaying the heatmap generated by the CNN model. Users 

can switch between different slides and heatmaps using 

simple controls, with the added functionality of voice 

communication and annotation tools to facilitate 

collaboration. The Oculus Quest devices connect to the 

Unity server, allowing users to visualise and manipulate 

diagnostic data in real-time, further enhancing the 

interactive experience. 

 

FIGURE 2. The system architecture. 

3.5. Testing and Post Processing 

Evaluating the CNN model within the VR 

environment is essential to assess its performance and 

usability. The testing phase involves applying the model to 

new, unseen WSIs and visualising the results in real-time 

within the VR space. This process ensures that the system 

can accurately classify tissue samples and provide clear 

diagnostic insights to users. 

Testing begins with patch extraction, following the 

same methodology as the training phase. Patches are taken 

from the test WSIs while preserving their location 

information, including row and column indices, to facilitate 

precise heatmap generation. The extracted patches are then 

processed by the trained CNN model, which predicts the 

likelihood of each patch containing cancerous cells. The 

results are stored in a probability matrix, recording both the 

location and confidence level of each prediction. 

Post-processing focuses on generating heatmaps from the 

probability matrix, providing a visual representation of the 

model’s predictions. In these heatmaps, regions with a high 

probability of cancer are highlighted in red, while areas 

with a low probability appear in blue. In enhancing clarity 

and reducing noise, Gaussian filtering is applied, smoothing 



 

 

the heatmaps for improved visualisation. This refined 

output allows users to interpret diagnostic data more 

effectively within the immersive VR environment. 

3.6. Multi-User Interaction in VR 

One of the primary objectives of this study is to enable 

human-AI collaborative diagnostics in a VR environment. 

The system allows multiple users to enter the same virtual 

space, view the same WSIs and heatmaps, and 

communicate in real time (Fig. 3). 

 

FIGURE. 3. The multi-user VR environment. 

4. Results 

The results of this study focus on the performance of 

the CNN model in identifying cancerous regions in Whole 

Slide Images (WSIs), as well as the effectiveness of the 

multi-user Virtual Reality (VR) environment in facilitating 

collaborative diagnostics. 

4.1. Machine Learning Performance 

The CNN model, built on the GoogLeNet architecture, 

was trained using a subset of the Camelyon16 dataset due 

to computational limitations. Despite the restricted training 

data, the model demonstrated strong classification 

performance on WSIs, effectively distinguishing between 

cancerous and non-cancerous patches. 

The model achieved approximately 85% accuracy on 

the validation set, with a steadily decreasing cross-entropy 

loss throughout training. These results indicate that the 

model successfully learned the distinctions between 

malignant and normal tissue. A confusion matrix was used 

to further assess classification performance, revealing a 

relatively low false-negative rate, critical in medical 

applications where missing a cancerous region could have 

severe consequences. While the false-positive rate was 

slightly higher, this suggests a conservative approach, 

prioritising caution in predictions. 

To visually interpret the model’s predictions, heatmaps 

were generated and overlaid on the original WSIs. These 

heatmaps effectively highlighted cancerous regions, with 

red indicating a high probability of malignancy and blue 

representing a low probability. Gaussian filtering was 

applied to smooth the heatmaps, reducing noise and 

improving clarity, making it easier for pathologists to 

analyse and interpret the results. 

 

4.2. VR Environment Implementation 

The integration of the CNN model’s output into the 

VR environment was a key component of this study, 

providing pathologists with an immersive and interactive 

3D space to analyse WSIs and heatmaps more effectively. 

By incorporating VR technology, the platform enhanced 

data visualisation and user interaction, allowing for a more 

intuitive diagnostic experience. 

The VR environment was designed with a 

user-friendly interface featuring two primary display planes: 

one showing the original WSI and the other presenting the 

corresponding heatmap. Users could seamlessly switch 

between different slides and heatmaps using keyboard 

inputs, while basic navigation and interaction tools enabled 

efficient exploration of the data. A major advantage of the 

platform was its multi-user collaboration feature, allowing 

multiple users to engage in the same virtual space 

simultaneously. Real-time interactions, such as pointing to 

specific slide areas or highlighting key regions, were 

supported, and voice communication was facilitated 

through the Oculus Quest’s built-in microphone and 

speakers, enabling discussions and collaborative 

decision-making. 

Usability feedback from pathologists who evaluated 

the VR system was largely positive. Many appreciated the 

immersive nature of the environment, which allowed for a 

more intuitive examination of WSIs compared to traditional 

2D methods. The ability to collaborate in real-time with 

colleagues was also highlighted as a significant benefit. 

However, some users suggested that VR controls could be 

further refined, particularly for those less experienced with 

VR technology, to improve overall ease of use and 

accessibility. 

5. Discussions 

The discussion section provides a critical analysis of 

the results, addressing the strengths and limitations of the 



 

 

study and exploring potential avenues for future research. 

5.1. Analysis of Results 

The integration of ML and VR in this study marks a 

significant advancement in human-AI collaboration in 

digital pathology. The CNN model demonstrated good 

performance in identifying cancerous regions within WSIs, 

while heatmap visualisations provided a clear and intuitive 

method for interpreting its predictions. By incorporating 

VR, pathologists were able to interact with diagnostic data 

in an immersive and collaborative setting, enhancing both 

individual analysis and teamwork. This interactive 

approach has the potential to improve diagnostic accuracy 

and decision-making by providing an effective platform for 

human junior and senior pathologists to work with AI 

results. However, user feedback suggested that refining the 

VR interface could further enhance the overall experience, 

making it more intuitive and accessible for all users. 

6. Conclusions 

This study has presented an effective human-AI 

collaboration platform by demonstrating the potential of 

integrating ML and VR technologies for breast cancer 

diagnosis using digital pathology. The development and 

implementation of a multi-user VR environment, combined 

with a CNN model trained on WSIs, represent a viable step 

forward in the field of digital pathology utilising concepts 

in human-AI collaboration development. 

This interactive system provided an intuitive way to 

visualise diagnostic data while facilitating real-time 

collaboration among medical professionals. The ability to 

share insights and annotate slides collectively demonstrated 

the potential for improved diagnostic accuracy through 

teamwork between multiple human pathologists and AI. 
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