
 

 

COMPOSITE-SCALED EFFICIENTNET FOR ENHANCED MALAYSIAN 

TRAFFIC SIGN RECOGNITION 

XIE HAN LIM1, WENG KIN LAI1,2 AND MEI KUAN LIM3 

1Department of Electrical and Electronic Engineering, Faculty of Engineering & Technology, Tunku Abdul Rahman 

University of Management & Technology, Kuala Lumpur, Malaysia. 
2Centre for Multimodal Signal Processing, Faculty of Engineering & Technology, Tunku Abdul Rahman University of 

Management & Technology. 
3School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor. 

E-MAIL: laiwk@tarc.edu.my 

Abstract: 
Accurate traffic sign recognition (TSR) is critical for 

autonomous vehicles, especially in diverse driving 

environments. While datasets such as the German Traffic Sign 

Recognition Benchmark (GTSRB) have been extensively 

studied, limited attention has been paid to specific regional 

challenges, especially in Malaysia. This study explores traffic 

sign recognition in Malaysia using a composite-scale 

convolutional neural network (EfficientNet). The Malaysian 

Traffic Sign (MTS) dataset contains signs with cultural 

uniqueness, language, and design differences, which are 

underexplored compared to global datasets. EfficientNet-B5 

was selected for its balance between accuracy and efficiency. 

Enhancements including image resizing, architecture depth 

expansion, and data augmentation were applied. Results show 

that EfficientNet-B5 achieves significant improvements, 

especially on the MTS dataset, demonstrating the potential for 

scalable, real-time TSR for autonomous driving systems in 

Malaysia. 
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1. Introduction 

Advances in autonomous vehicle technology depend 

on the ability to accurately recognize and interpret traffic 

signs under a variety of real-world conditions [1]. While 

deep learning models have achieved remarkable success in 

traffic sign recognition (TSR), the impact of preprocessing 

techniques such as image scaling on model performance 

remains underexplored [2]. This study fills this critical gap 

by investigating the impact of image scaling algorithms on 

the performance of EfficientNet, a state-of-the-art 

convolutional neural network (CNN) architecture, in the 

TSR task. 

The bulk of existing research—such as that by Y.L. 

Lee—focuses on the German Traffic Sign Recognition 

Benchmark (GTSRB), which provides a large, balanced, 

and highly structured dataset [3]. However, the Malaysian 

Traffic Sign (MTS) dataset presents unique challenges: 

smaller sample sizes, inconsistent resolutions, and cultural 

design variations. These characteristics necessitate 

customized approaches for training robust deep learning 

models.  

This study addresses this research gap by evaluating 

the EfficientNet family of models, known for its compound 

scaling technique, across two datasets—MTS and GTSRB. 

The primary objective is to analyze the performance of 

EfficientNet-B5, supported by methodological 

improvements such as image resizing, deeper model 

architecture, and data augmentation. Emphasis is placed on 

Malaysian traffic signs to underscore the novelty and 

regional significance of the work. This study makes three 

key contributions: 

1. We conduct a comprehensive empirical study of 

EfficientNet architectures (B0–B7) on the GTSRB 

dataset to identify the most optimal model for the 

MTS dataset 

2. We demonstrate that larger input resolutions can 

enhance the accuracy by 3.62% 

3. We propose methodological enhancements, 

including layer additions and data augmentation, 

which improves the performance of B5 on MTS 

dataset by 17.45%. 

The paper is organized as follows. After this 

introduction, some prior work related to EfficientNet 

Models is discussed. The details of various methods to 

improve accuracy, the datasets and the details of the 
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experimental setup are described in Section 3. Section 4 

presents the experimental results obtained from the various 

methods to improve accuracy. Finally, conclusions and 

some areas for future work are presented in Section 5. 

2. Related Work 

Review of previous studies indicates that the 

pre-trained network methods may be classified into 3 main 

groups, which are Traditional Machine Learning and Deep 

Learning, Convolution Neural Network (CNN), and 

EfficientNet Models. 

2.1. Traditional Machine Learning and Deep Learning 

Traffic sign recognition (TSR) has evolved 

significantly with advancements in deep learning, 

particularly Convolutional Neural Networks (CNNs). 

Traditional machine learning methods, such as Support 

Vector Machines (SVMs), were initially employed for TSR 

but required manual feature extraction, limiting their 

adaptability and accuracy. Lai et al. [4] demonstrated that 

CNNs outperform SVMs in image recognition tasks, 

achieving 98.85% accuracy on the MNIST dataset 

compared to 93.92% for SVMs, highlighting the superiority 

of automated feature learning in deep learning. 

2.2. Convolution Neural Network (CNN) 

Recent studies have focused on optimizing CNN 

architectures for TSR. Shustanov and Yakimov [5] achieved 

99.94% accuracy on the GTSRB using a modified Hough 

transform with CNN preprocessing, emphasizing the 

importance of real-time processing. Similarly, Hechri and 

Mtibaa [6] proposed a two-stage CNN with filtering 

techniques, attaining 99.37% accuracy on GTSRB, though 

their model struggled with triangular signs due to shape 

variability. These works underscore the need for robust 

preprocessing to handle noise and occlusion. 

2.3. EfficientNet Models 

EfficientNet has emerged as a scalable solution for 

TSR, balancing accuracy and computational efficiency. 

Bouderbal et al. [7] compared EfficientNet variants (B0–B7) 

with MobileNetV2 on GTSRB, showing that 

EfficientNet-B7 achieved 98.21% accuracy, outperforming 

MobileNetV2 (91.66%). This aligns with findings by YL 

Lee [3], where EfficientNet-B0 achieved 99.08% accuracy 

on GTSRB and 95.06% on the China Traffic Sign (CTS) 

dataset, though CTS’s text-heavy signs posed challenges. 

The scalability of EfficientNet, via compound scaling of 

depth, width, and resolution, makes it suitable for 

resource-constrained applications like autonomous vehicles. 

Beyond TSR, EfficientNet has proven effective in 

medical imaging. Savas and Damar [8] used transfer 

learning with EfficientNet-B5 to classify brain MRI images, 

achieving 98.39% accuracy after hyperparameter tuning. 

Similarly, Naidji and Elberrichi [9] employed 

EfficientNet-B7 with attention mechanisms for COVID-19 

detection in chest X-rays, attaining 96.5% accuracy. These 

applications demonstrate EfficientNet’s versatility and 

robustness across domains. 

Despite these advances, gaps remain in applying 

EfficientNet to diverse traffic sign datasets like CTS and 

Malaysia Traffic Signs (MTS). Previous studies primarily 

focused on GTSRB, leaving room for optimization in 

multi-lingual or region-specific sign recognition. Our work 

addresses this by evaluating EfficientNet-B5’s performance 

across GTSRB, CTS, and MTS, with enhancements such as 

image resizing and augmentation. 

3. Methodology 

In this study, special attention is given to the MTS 

dataset due to its regional importance and 

underrepresentation in TSR research. Unlike the 

well-established GTSRB dataset, the MTS dataset is 

smaller and contains culturally unique traffic signs, 

requiring targeted preprocessing and architectural strategies 

for effective learning. 

3.1. Traffic Sign Images 

In this section, we briefly outline the 2 main datasets 

used in this study: GTSRB [10], and MTS datasets.  

The GTSRB is one of the most extensive benchmarks 

for evaluating traffic sign recognition (TSR) algorithms 

[11]. It contains 51,839 images covering 43 different types 

of traffic signs, fully representing the variations in 

real-world scenes with various lighting, weather conditions, 

and partial occlusions. Its extensive coverage and detailed 

annotations make it a valuable resource for benchmarking 

TSR techniques.  

In contrast, the MTS dataset is tailored to the 

Malaysian road environment and presents a unique set of 

challenges. It contains only around 2,001 images across 50 

categories, making it considerably smaller and less 

balanced than GTSRB. Malaysian traffic signs often 

include bilingual text in Malay and English, as well as 

region-specific warnings and instructions—such as the 

frequent use of “BERHENTI” (meaning “STOP”). These 

signs are more varied in appearance and include complex 

elements like symbols, shapes, colors, and language that 



 

 

require deeper contextual understanding. Furthermore, the 

MTS dataset contains images with significantly higher 

variability in lighting, extreme weather conditions (such as 

morning, night, heavy rain, fog, and glare), and resolution, 

making it a more realistic representation of real-world 

driving scenarios compared to the GTSRB. Figure 1 shows 

GTSRB and MTS’s samples. 

    

(a) GTSRB  

    

(b) MTS 

FIGURE 1. Sample Traffic Sign Images 

Due to these differences, models trained on GTSRB 

typically perform well in structured and uniform 

environments but may struggle with the irregularities 

present in MTS. Thus, working with the MTS dataset 

requires more robust preprocessing techniques and model 

tuning to handle its complexities. Ultimately, while GTSRB 

is ideal for benchmarking and academic comparisons, the 

MTS dataset is more relevant for real-world applications in 

Malaysia and similar regions, highlighting the importance 

of region-specific datasets in autonomous vehicle 

development. 

3.2. Image Resizing 

Image resizing is a crucial preprocessing step in 

computer vision and deep learning that ensures input 

images have consistent dimensions, which is essential for 

neural network models. It involves scaling images using 

interpolation methods like bilinear or bicubic, and the 

choice of technique can impact model performance by 

either preserving or distorting image details. Resizing may 

include maintaining aspect ratio or adapting dimensions as 

needed, often paired with normalization to enhance 

efficiency. Tools like OpenCV and PIL simplify this process 

[12], [13] and advanced techniques such as adaptive 

resizing or padding are used in tasks like object detection to 

retain important features. Overall, resizing is a simple yet 

vital step to ensure compatibility between image data and 

model architecture. 

3.3. Increasing number of layers on CNN Model 

Adding more layers to a convolutional neural network 

can improve its ability to learn complex and hierarchical 

features; however, this enhancement comes with increased 

computational demands and a higher risk of overfitting, 

particularly when dealing with smaller or imbalanced 

datasets like the Malaysian Traffic Sign (MTS) dataset. 

EfficientNet addresses this challenge through compound 

scaling, which proportionally increases depth (number of 

layers), width (number of channels), and resolution (input 

image size), rather than focusing solely on depth. In this 

study, although deeper models like EfficientNet-B7 were 

evaluated, they did not outperform mid-sized models such 

as EfficientNet-B5, which demonstrated better accuracy 

and efficiency. This suggests that simply adding more 

layers does not always result in better performance and may 

even lead to diminishing returns. EfficientNet-B5 proved to 

be a more practical and effective choice, striking the right 

balance between model complexity and recognition 

accuracy, especially in the context of region-specific and 

complex datasets such as MTS. 

3.4. Augmentation 

Data augmentation is a technique that increases the 

size and diversity of a training dataset by applying random 

transformations such as rotation, flipping, scaling, and color 

adjustments to existing data. This helps improve model 

generalization and reduce overfitting, especially when the 

dataset is small or lacks diversity. The effectiveness of data 

augmentation depends on the relevance of the chosen 

transformation to the specific task. While simple techniques 

are commonly used, more advanced methods like GANs or 

style transfer can also generate diverse data, although their 

implementation is more complex. Libraries such as 

TensorFlow and PyTorch provide built-in support for data 

augmentation, making it easy to integrate into the training 

workflow. In summary, data augmentation is a 

cost-effective way to improve model robustness and 

performance, especially in fields where collecting labeled 

data is challenging, such as medical imaging and 

autonomous driving. 

4. Results and Discussion 

4.1. Investigating EfficientNET Model for optimal 

Traffic Sign Recognition 

TABLE 1. Default Parameter Settings 

Parameter Details 

Input Image Size 60 x 60 x 3 
Bath Size 32 

Maximum Training Epochs 100 

Early Stopping Criteria 
No improvement in Validation Loss for 

more than 10 epochs 

Loss Function Categorical Cross-Entropy 

Optimization Algorithm Adam with an initial learning rate 0.001 



 

 

TABLE 2. Result of GTSRB using Default Parameter for various 

EfficientNET models 

EfficientNet Model Accuracy Loss 

B0 95.81 19.85 

B1 96.23 19.03 

B2 96.26 16.89 
B3 95.78 19.13 

B4 97.13 10.35 

B5 97.26 13.74 
B6 96.18 13.84 

B7 95.52 16.66 

This section evaluates the performance of EfficientNet 

models for traffic sign recognition, with a primary focus on 

the MTS dataset due to its practical relevance and unique 

challenges. The evaluation began by benchmarking eight 

EfficientNet variants (B0 through B7) on the GTSRB 

dataset. This dataset, being large, well-labeled, and 

relatively balanced, served as an ideal platform for 

establishing baseline performance. EfficientNet-B5 

achieved the highest classification accuracy of 97.26% 

among all variants, outperforming deeper models like B6 

and B7, which suffered slightly from diminishing returns 

and increased computational cost. This makes B5 a 

practical choice for embedded systems used in real-time 

autonomous vehicle applications. 

TABLE 3. Test Accuracy of MTS Dataset on various EfficientNET 

models 

EfficientNet 

Model 

Test Accuracy 
Difference 

GTSRB MTS 

B0 95.81 76.08 19.73 
B1 96.23 77.46 18.77 

B2 96.26 66.74 29.52 

B3 95.78 83.26 12.52 
B4 97.13 71.88 25.52 

B5 97.26 86.78 10.48 

B6 96.18 81.92 14.26 
B7 95.52 77.23 18.29 

The table compares EfficientNet models on the MTS 

dataset, with B5 achieving the highest accuracy 

(86.78%)—a 10.7% improvement over B0 (76.08%). MTS 

presents challenges like limited data, inconsistent images, 

and bilingual signs, making recognition difficult. B5's 

success stems from its compound scaling of depth, width, 

and resolution, enabling robust feature extraction. It also 

shows the smallest accuracy gap (10.48%) between GTSRB 

and MTS, proving its strong generalization. In contrast, 

models like B2 and B4 struggle with larger drops (29.52% 

and 25.52%), revealing their limitations. These results 

demonstrate that advanced architectures like B5 perform 

best in complex, real-world traffic scenarios. 

4.2. Image Resize on EfficientNET-B5 Model 

  
FIGURE 2. Image dimension visualization of the MTS Train Dataset 

  
FIGURE 3. Image dimension visualization of the MTS Test Dataset 

TABLE 4. Result of 60 x 60 (Original Image Size) VS. Other Sizing 

Datasets Image Size Accuracy Loss 

MTS 

60 x 60 86.78 70.73 

75 x 75 88.47 53.66 
100 x 100 90.40 45.60 

125 x 125 89.06 53.42 

This part of the study evaluates the impact of image 

resizing on the EfficientNet-B5 model using the MTS 

dataset, with results summarized in Table 4 and visualized 

in Figures 2 and 3. Resizing images from 60×60 to 

100×100 pixels improved accuracy from 86.78% to 90.40% 

and reduced loss from 70.73 to 45.60, indicating better 

feature recognition. However, larger input sizes (100×100) 

require about 2.78 times more computations. Despite this, 

the accuracy gain justifies the resizing for more critical 

applications, given the variability of the MTS dataset. 

Increasing the size to 125×125 caused a slight accuracy 

drop (89.06%) and higher loss (53.42%), suggesting 

diminishing returns. Figures 3 and 4 show that resizing to 

100×100 aligns with the natural image size distribution in 

the MTS dataset, helping to standardize inputs and reduce 

variability. 

4.3. Impact of Layers on EfficientNET-B5 

TABLE 5. Hyperparameters for various layers 

Hyperparameter 
Values 

1 Layer 2 Layers 3 Layers 

Base Model EfficientNet-B5 

Dense Layer 1 Units 256 512 512 

Dense Layer 1 Activation ReLU 
Dropout 1 Rate 0.5 0.5 0.5 

Dense Layer 2 Units - 256 256 

Dense Layer 2 Activation ReLU 



 

 

Dropout 2 Rate - 0.5 0.5 

Dense Layer 3 Units - - 128 
Dense Layer 3 Activation ReLU 

Dropout 3 Rate - - 0.5 

Output Dense Layer Softmax 

TABLE 6. Result of adding 1 Layer VS. More Layers 

Datasets Add Layers Accuracy Loss 

 0 Layer 89.73 141.05 

MTS 

1 Layer 90.40 45.60 

2 Layers 92.50 39.45 
3 Layers 92.54 39.97 

This section explores how modifying the 

EfficientNet-B5 architecture by adding more fully 

connected layers affects the model's learning ability and 

accuracy. The experiments involve three enhancement 

schemes shown in Table 5: adding one, two, and three fully 

connected layers to the original EfficientNet-B5 

architecture. These enhancements aimed to improve the 

network’s ability to capture fine-grained details, especially 

in Malaysian traffic signs that often include complex icons, 

mixed text, and color contrasts. On the MTS dataset, 

accuracy improved progressively with each added layer, 

peaking at 92.54% with three dense layers. This indicates 

that deeper models are better equipped to learn intricate 

patterns in challenging datasets. However, it’s important to 

note that overly deep networks can introduce risks of 

overfitting, particularly when working with smaller datasets 

like MTS, and should therefore be implemented with proper 

regularization techniques such as dropout. 

4.4. Impact of Data Augmentation on Model Performance 

TABLE 7. Methodological Enhancements for Augmentation 

Augmentation Methods Tunning Value 

Width Shift Range 0.2 

Height Shift Range 0.2 

Shear Range 0.15 
Zoom Range 0.15 

Fill Mode Nearest 

 

TABLE 8. Result of With Augmentation VS. Without Augmentation 

Datasets 
Add 

Augmentation 

Total 

Train 

Images 

Total 

Test 

Images 

Accuracy Loss 

MTS 
No Aug 1556 465 92.54 39.97 

Aug 9336 2790 93.53 31.37 

This section analyzes the effect of applying data 

augmentation techniques on improving the generalization 

ability of the EfficientNet-B5 model. Table 7 shows the 

data augmentation strategies, including width and height 

translation, shear transformation, scaling, and various 

padding modes. These techniques are used to artificially 

expand the training dataset and simulate real-world 

situations that a vehicle vision system may encounter, such 

as rotation, distortion, or occlusion. On the MTS dataset, 

augmentation increased the number of training images 

significantly and led to an improvement in accuracy from 

92.54% to 93.53%. Furthermore, the model's loss was 

reduced from 39.97 to 31.37, highlighting improved 

generalization. These results underscore the importance of 

augmentation for smaller, diverse datasets where overfitting 

is a common issue. By introducing artificial variability, the 

model becomes more resilient to changes in lighting, angle, 

and obstruction—conditions typical of real-world driving 

environments. 

4.5. Performance Comparison 

TABLE 9. Result of CNNs on all Datasets (Previous Work) 

CNNs Model on MTS Test Accuracy 

Lenet-5 58.48 

Lenet 58.78 

AlexNet 71.88 
MobileNet 74.40 

ResNet-50 75.41 

InceptionV3 75.73 
VGG-16 75.97 

EfficientNet-B0 76.08 

EfficientNet-B5 + 3 FC Layers + 
Augmentation (EB5.3FC.Aug) 

93.53 

The last section provides a comprehensive comparison 

of the optimized our model (EB5.3FC.Aug) with earlier 

studies based on EfficientNet-B0 and other traditional CNN 

architectures. With the MTS dataset, EB5.3FC.Aug 

achieved the highest test accuracy of 93.53%, a significant 

improvement from MobileNet’s 74.40% and ResNet-50’s 

75.41%. Even EfficientNet-B0, a lighter version of the 

same family, only achieved 76.08%. The performance 

improvement is attributed to the compound scaling strategy 

of EB5.3FC.Aug, which balances depth, width, and 

resolution. Although these improvements may seem 

insignificant in terms of numerical value, they are crucial in 

the field of autonomous driving, where accuracy and 

reliability are critical to safety. These results further solidify 

EB5.3FC.Aug’s viability as a state-of-the-art solution for 

traffic sign recognition and set a new benchmark in this 

field. 

TABLE 10. Comparative Test Accuracy of GTSRB and MTS Datasets 

Datasets CNNs Model Test Accuracy 

GTSRB EfficientNet-B0 99.08 
MTS EB5.3FC.Aug 93.53 

Table 10 presents a comparison of the test accuracy 

between two traffic sign datasets: the German Traffic Sign 

Recognition Benchmark (GTSRB) and the Malaysia Traffic 

Sign (MTS) dataset, using different EfficientNet models. 



 

 

The GTSRB dataset achieved a test accuracy of 99.08% 

with EfficientNet-B0, while the MTS dataset attained 

93.53% accuracy with EB5.3FC.Aug. The higher accuracy 

of the GTSRB dataset may be attributed to factors such as a 

larger and more diverse collection of labeled images, 

standardized lighting and environmental conditions, or the 

maturity of the dataset, which has been widely used and 

refined in research. In contrast, the MTS dataset's slightly 

lower accuracy could reflect challenges like fewer training 

samples, greater variability in sign designs, or less optimal 

image quality. The choice of EfficientNet models—B0 for 

GTSRB and B5 for MTS—suggests a trade-off between 

computational efficiency and performance, with B5 likely 

selected for MTS to handle its potential complexities. 

Overall, the results highlight the influence of dataset 

characteristics and model selection on traffic sign 

recognition performance. 

5. Conclusions 

This study explored the application of EfficientNet 

models for traffic sign recognition, with a focus on the 

unique challenges posed by the Malaysian Traffic Sign 

(MTS) dataset. The results demonstrated that 

EfficientNet-B5, enhanced with image resizing, additional 

layers, and data augmentation, achieved a significant 

improvement in accuracy, reaching 93.53% on the MTS 

dataset. This performance surpassed earlier models like 

EfficientNet-B0 and traditional CNNs, highlighting the 

effectiveness of compound scaling and targeted 

preprocessing techniques. The findings underscore the 

importance of region-specific adaptations in traffic sign 

recognition, particularly for datasets with cultural and 

linguistic diversity. The success of EfficientNet-B5 in 

handling the complexities of the MTS dataset suggests its 

potential for real-world applications in autonomous driving 

systems, where accuracy and robustness are critical. Future 

work could explore further optimizations, such as advanced 

augmentation techniques or hybrid architectures, to address 

remaining challenges in diverse and dynamic environments. 

Overall, this study contributes to the growing body of 

research on scalable and efficient deep learning solutions 

for traffic sign recognition, with practical implications for 

autonomous vehicle technology in Malaysia and beyond. 
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