
MUTUAL INFORMATION AND LATENCY-AWARE ADAPTIVE CONTROL
FOR RESOURCE-EFFICIENT GRAPH NEURAL NETWORKS

YAN-FEI MA1, DAO-ZHENG QU2

1Department of Computer Science, Fairleigh Dickinson University, Vancouver, V6B 2P6, Canada
2Department of Computer Science, University of Liverpool, Liverpool, L69 3DR, UK

E-MAIL: yanfei.ma@ieee.org, daozheng.qu@ieee.org

Abstract:
Despite their many potential applications, graph neural

networks (GNNs) are challenging to deploy on low-resource
devices like Internet of Things nodes and mobile platforms
due to their high energy and processing demands. We propose
MLC-GNN, a lightweight architecture that dynamically opti-
mizes depth, precision, and channel width during inference.
MLC-GNN uses a middle-layer controller based on real-time
mutual information estimate and a PID-based energy guard
to offer efficient adaptation under strict energy and latency
constraints. Extensive experiments on four benchmark
datasets and five baselines demonstrate that MLC-GNN
achieves competitive or superior accuracy and precision,
while reducing energy consumption and inference delay by
up to 50%. These results show the utility of MLC-GNN
in enabling energy-efficient GNN inference on edge devices.
Keywords:

Graph Neural Networks, Resource-Constrained Inference,
Energy-Efficient Deep Learning, Dynamic Model Adaptation,
Mutual Information Estimation, Quantized GNNs

1. Introduction

Graph neural networks (GNNs) are widely used for
learning from graph-structured data in applications such
as fraud detection, drug discovery, and traffic forecast-
ing [?, ?], due to their ability to model non-Euclidean re-
lationships. However, GNNs remain difficult to deploy on
energy-constrained platforms such as mobile devices and
IoT edge systems.

Unlike cloud systems with ample resources, edge devices
operate under tight energy and latency budgets. Stan-
dard GNNs’ memory overhead, message passing, and full-

precision computation are too costly in such settings. As
a result, GNN designs that can adaptably function un-
der different hardware budgets without sacrificing perfor-
mance are becoming more and more in demand.

Despite recent efforts, most existing GNN models suffer
from three critical limitations that hinder their real-world
deployability: (i) Static architectures: Traditional GNNs
use fixed width and depth, which prevents graceful scaling
under energy constraints and leads to inefficient computa-
tion. (ii) Fixed-precision computation: Many GNNs rely
on static quantization (e.g., INT8 or FP32), missing fine-
grained trade-offs between accuracy and energy, and thus
may overconsume resources. (iii) Unaware of information
degradation:Deep GNNs suffer from cross-layer informa-
tion loss, yet most models lack runtime tools to monitor
or control mutual information, risking under- or overfit-
ting under constraints.

Together, these constraints limit GNNs’ ability to adjust
to dynamic execution contexts, especially in applications
that are energy-conscious and latency-sensitive [?, ?]. A
new class of designs that can both intelligently react to
runtime signals and compress computation is needed to
address them.

In this paper, we offer MLC-GNN (Mutual Information
and Latency-aware Control for GNNs), a lightweight GNN
framework built for energy-constrained inference. MLC-
GNN has a middle-layer controller that dynamically mod-
ifies the channel width, quantization precision, and mes-
sage transmission depth by monitoring real-time mutual
information and device energy feedback. To enable robust
inference on edge devices, this adaptive control is further
controlled by a PID-based energy guard that maintains
cumulative energy consumption within goal bounds.

Our contributions are summarized as follows:



• We design MLC-GNN, the GNN architecture that
dynamically controls depth, precision, and channel
width based on real-time mutual information and de-
vice energy feedback.

• We introduce a bound-aware control law and a PID-
based energy guard to ensure stable, energy-efficient
inference under resource constraints.

• Experiments on four datasets show up to 50% energy
savings and improved precision over five baselines.

2. Related Work

Static GNN Architectures. GraphSAGE [?] and
GCNs [?] are widely used for semi-supervised classifi-
cation. Their static design—fixed depth, width, and
precision—limits adaptability. Even GraphSAGE’s sam-
pling lacks runtime flexibility. Fixed-depth models under-
perform on graphs with high resistance [?]. S-GCN [?]
reduces latency via simplification but remains rigid.

Quantized and Compressed GNNs. QGNN [?],
TinyGNN [?], and GNNPack [?] use low-bit ops and
system-level optimizations. However, fixed settings limit
adaptability. Without feedback, quantized models may
over-prune and generalize poorly.

Energy- and Latency-Aware Deep Learning. Skip-
Net [?], DynamicNet [?], and CondConv [?] use input-
aware routing. But in GNNs, neighborhood aggregation
and graph irregularity make dynamic computation harder.
DeltaGNN [?] and HGNAS [?] address this but rely on
costly meta-learning.

Mutual Information Estimation in GNNs. MI degrades
as GNNs deepen [?]. InfoMax GNN [?] preserves MI dur-
ing training but does not affect inference. MLC-GNN uses
MI as a runtime signal to adaptively tune GNN architec-
ture based on data and energy constraints.

3. Methodology

We present MLC-GNN, a modular and lightweight
framework for GNN inference that uses less energy.
MLC-GNN dynamically modifies three fundamental archi-
tectural dimensions—depth, quantization precision, and
channel width—during runtime, in contrast to conven-
tional GNNs that use static topologies and uniform pre-
cision. Real-time energy status and mutual information
(MI) feedback are used to adaptively make these changes.

Input

Encoder (1 GCN, INT8) 3 layer Controller(Depth, Precision, annel Width) Decoder (1 GCN, INT8)

Softmax

Output

Controller decision

Hop 1

Hop 2

Hop 3

Hop 4

FIGURE 1. Overview of the MLC-GNN architecture. The input
features are first embedded by a low-precision encoder (1-layer
GCN, INT8). The 3-layer controller then observes real-time
mutual information Îℓ and current energy state Eh, and outputs
decisions to dynamically adjust depth (L), precision (κ), and
channel width (C). These settings configure the message-passing
MLC blocks (not explicitly shown), followed by an INT8 decoder
GCN and softmax classification. A PID-based energy guard
modulates controller decisions by injecting feedback from recent
energy deviation signals.

3.1. System Overview

As illustrated in Figure 1, the MLC-GNN architecture
consists of five key components: (1) Encoder: A fixed
single-layer GCN that encodes input features into a low-
precision latent space (INT8, 128-dim); (2) Middle-layer
Controller: A lightweight neural controller that observes
mutual information Îℓ and cumulative energy state, then
issues actions for upcoming hops; (3) MLC-Block: A con-
figurable GCN layer supporting dynamic hop count L, pre-
cision κ, and channel width C; (4) Decoder: A single-layer
INT8 GCN for mapping features to class logits; (5) PID
Energy Guard: A PID controller maintaining energy usage
within bounds using a sliding window of inference traces.

Each inference pass follows the pipeline: Input → En-
coder → Controller → MLC-Blocks → Decoder → Out-
put. The controller dynamically adjusts the runtime con-
figuration based on observed mutual information Îℓ and
current energy state Eh, selecting the number of message-
passing layers (depth L), bit precision (κ), and active
channels (C). These decisions are further modulated by a
PID-based energy guard to ensure energy remains within
the target envelope.

To better illustrate the overall structure and execution
process of MLC-GNN, we summarize the complete infer-
ence and training workflow in Algorithm 1.



Algorithm 1 MLC-GNN: Adaptive Inference and Training
Procedure

Input: Graph G = (V,E,X), energy budget Emax
h

Output: Node classification results {ŷv}v∈V

1: Initialization:
2: Initialize encoder E , decoder D, controller C, PID

guard
3: Set controller state: κ← 8, C ← 128
4: Warm-up Phase (30 epochs):
5: for epoch = 1 to 30 do
6: Forward pass with static config: (L = 4, κ =

8, C = 128)
7: Update model via LCE
8: end for
9: Adaptive Phase (100 epochs):

10: for epoch = 31 to 130 do
11: for each node v ∈ V do
12: Encode:
13: h0

v ← E(xv)
14: Initialize: Eh ← 0
15: for ℓ = 1 to Lmax do
16: Estimate Mutual Information: Îℓ ←

MINE(hℓ−1
v )

17: Compute Bound: Bℓ ← exp(−αℓRavg) ·
exp(−β(Emax

h − Eh)) · 2−κ

18: Controller Decision:
19: gℓ ← Îℓ − Bℓ
20: if gℓ < τskip then
21: Skip hop ℓ
22: continue
23: else if gℓ > τboost and Eh < Emax

h then
24: Increase κ or add hop
25: end if
26: Update C ← clip(C + ηgℓ, 64, 256)
27: Forward Hop: hℓ

v ←
MLC-Block(hℓ−1

v , κ, C)
28: Accumulate energy Eh

29: end for
30: Decode: ŷv ← D(hL

v )
31: end for
32: Update: Train with loss L = CE + λ · Energy
33: PID Update: Adjust ∆pid using et = Eh − Etarget
34: end for
35: Fine-tuning Phase (50 epochs):
36: for epoch = 131 to 180 do
37: Freeze controller; refine weights using CE loss
38: end for
39: return {ŷv}v∈V

3.2. MLC-Block Design

The MLC-Block forms the core of adaptive inference.
At hop ℓ, it performs a GCN-style neighborhood aggrega-
tion, followed by:

(1)Layer normalization; (2)Non-linear activation (ReLU
or Swish); (3)Bit-width specific quantization (e.g., 4/8/16-
bit fixed-point); (4)Optional gating mechanism to bypass
layer computation when necessary.

Runtime projection modules choose subspaces of size
C ∈ {64, 128, 192, 256}, and all weight matrices are pre-
initialized at 256 channels to guarantee compatibility with
runtime switching. By turning on several quantization
layers, the quantization precision is dynamically chosen.
Rapid architectural reconfiguration is made possible by
this modular design, which eliminates the need for model
reinitialization or retraining.

3.3. Controller Architecture and Algorithm

The controller is a three-layer MLP (diminput = 3,
dimhidden = 64, dimoutput = 3) that takes as input the
estimated mutual information Îℓ, the cumulative energy
Eh, and the average effective resistance Ravg.

It determines whether to skip the next hop, increase
precision κ, and update channel width C, based on the
gap between observed MI and its theoretical bound.

3.4. Bound-Aware MI Control Law

To avoid overfitting and over-computation, we propose
a control signal Bℓ that acts as a soft upper bound on
required MI. It decays exponentially with both hop depth
and residual energy margin:

Bℓ = exp(−αℓRavg) · exp(−β(Emax
h − Eh)) · 2−κ (1)

where α, β are tunable decay parameters. The MI estima-
tion Îℓ is computed using a lightweight MINE probe with
512 hidden units and a shared discriminator across hops,
amortizing cost.

3.5. PID-Based Energy Guard

The energy guard monitors consumption over a sliding
window of 128 inferences. It employs PID control to mod-
ulate aggressiveness of controller decisions. Let Etarget



denote the desired per-inference energy. At each step, we
compute:

∆pid = P · et + I ·
t∑

i=1

ei +D · (et − et−1) (2)

where et = Et−Etarget is the error signal. The value ∆pid
is injected into the controller input to act as a correction
bias.

3.6. Training Schedule and Stability Measures

To ensure smooth convergence of the adaptive model,
training proceeds in three phases. Warm-up Phase (30
epochs): The model uses a static configuration (L = 4,
κ = 8, C = 128), and the controller remains inactive.
Adaptive Phase (100 epochs): The controller is activated,
and the model is optimized using the composite loss:

L = LCE + λ · Lenergy, λ = 0.1 (3)

where Lenergy denotes the average per-inference energy
consumption estimated during forward passes. Fine-
tuning Phase (50 epochs): The controller is frozen, and
model weights are refined.

Throughout, we use 5×10−4 for weight decay and cosine
learning rate decay. We employ EMA smoothing with a
decay factor of 0.95 and batch-wise gradient clipping to
stabilize MI estimation.

4. Evaluation

The effectiveness and practical deployability of the pro-
posed MLC-GNN model on low-power edge devices are
evaluated under resource-constrained scenarios. Verifying
if its dynamic adjustment of depth, accuracy, and channel
width can sustain predictive performance while drastically
lowering energy consumption and inference delay is the
fundamental objective.

4.1. Experimental Setup

Datasets. Experiments are conducted on four widely-
used graph datasets. Cora and Citeseer [?] are small cita-
tion networks with low node degrees. Amazon Photo [?]
is a medium-sized co-purchase graph with denser connec-
tions. ogbn-arxiv [?] is a large-scale citation graph from
the Open Graph Benchmark with over 169k nodes. This
selection allows evaluation across diverse graph structures.

Setup. All models are deployed on Raspberry Pi 5 and
NVIDIA Jetson Nano. We use PyTorch 2.0 + CUDA 11.8,
apply quantization-aware training (QAT) with static INT8
calibration, and record energy using on-device sensors (TI
INA219 on Pi; Jetson built-in monitor) with 1-second in-
tervals. Batch size is 128; all results are averaged over 5
runs.

Metrics. We evaluate test set accuracy, precision (true
positives over predicted positives), energy consumption
(mJ per inference), and latency (ms per inference).

Baselines. We compare MLC-GNN against five models:
GCN [?], a two-layer FP32 GCN; GraphSAGE [?], a scal-
able aggregator-based GNN; QGNN [?], an 8-bit quantized
GCN; S-GCN [?], a simplified GCN with linear propaga-
tion; and DeltaGNN [?], which adaptively skips message-
passing layers. All models are retrained using the same
QAT pipeline and evaluated under identical hardware con-
ditions.

4.2. Main Results and Analysis

Table 1 summarizes the performance of MLC-GNN and
baseline models across four benchmark datasets. While
GraphSAGE achieves the highest accuracy in most cases,
MLC-GNN consistently delivers the best energy and la-
tency performance. It also maintains competitive accu-
racy and often yields the highest precision, demonstrating
its effectiveness under resource-constrained scenarios.

TABLE 1. Performance comparison across datasets and models.

Dataset Model Accuracy (%) Precision (%) Energy (mJ) Latency (ms)

Cora

GCN 82.1 81.7 58 5.1
GraphSAGE 83.0 82.6 61 5.4
QGNN 80.6 79.5 36 4.3
S-GCN 81.0 80.8 32 4.3
DeltaGNN 82.3 81.9 30 4.2
MLC-GNN 82.7 83.1 28 4.2

Citeseer

GCN 71.9 71.5 62 5.7
GraphSAGE 72.8 72.3 65 5.9
QGNN 69.0 67.8 39 4.5
S-GCN 70.6 70.1 35 4.4
DeltaGNN 71.5 71.0 31 4.4
MLC-GNN 71.2 71.6 30 4.3

Amazon Photo

GCN 89.4 89.0 97 9.5
GraphSAGE 90.1 89.3 102 9.9
QGNN 86.8 85.9 56 7.3
S-GCN 88.2 87.5 51 7.1
DeltaGNN 88.9 88.6 49 7.1
MLC-GNN 89.2 89.5 48 7.0

ogbn-arxiv

GCN 71.2 70.8 152 16.8
GraphSAGE 72.3 72.0 160 17.2
QGNN 67.5 66.3 89 12.5
S-GCN 69.8 69.0 81 12.0
DeltaGNN 70.4 70.2 78 11.9
MLC-GNN 71.0 71.4 76 11.9

In particular, on Cora, MLC-GNN reduces energy con-
sumption by 52% and latency by 18% compared to GCN,



while achieving the highest precision and competitive ac-
curacy (within 0.3% of GraphSAGE). On Citeseer, MLC-
GNN achieves a precision score close to GraphSAGE
(71.6% vs 72.3%), with the lowest energy and latency—
cutting energy usage by more than 50%. On Amazon
Photo, MLC-GNN offers a highly favorable trade-off be-
tween accuracy and energy, achieving near-top accuracy at
significantly lower power cost, as shown in Figure 2. On
ogbn-arxiv, MLC-GNN maintains strong predictive per-
formance (1.3% lower accuracy than GraphSAGE), while
reducing latency by approximately 30% and energy con-
sumption by over 50%.

50 60 70 80 90 100
Energy per Inference (mJ)

87.0

87.5

88.0

88.5

89.0

89.5

90.0

Ac
cu

ra
cy

 (%
)

GCN

GraphSAGE

QGNN

S-GCN

DeltaGNN

MLC-GNN

FIGURE 2. The energy-accuracy trade-off for all methods on
Amazon Photo

In summary, MLC-GNN strikes a strong balance be-
tween performance and efficiency: it consistently reduces
energy and latency by over 50% with only marginal ac-
curacy loss, and achieves the highest precision on most
datasets. This confirms its suitability for low-resource
GNN inference.

4.3. Ablation Study

To isolate the effect of each adaptive module, we con-
duct an ablation study on Amazon Photo:

TABLE 2. Ablation results on Amazon Photo (Accuracy / Pre-
cision / Energy / Latency)

Variant Accuracy (%) Precision (%) Energy (mJ) Latency (ms)
Full MLC-GNN 89.2 89.5 48 7.0
w/o MI control 88.1 87.7 66 8.5
w/o PID guard 88.6 88.3 58 7.9
Fixed C (128) 88.9 88.6 54 7.5

Each ablation variant disables a key adaptive compo-
nent from the full model: w/o MI control disables mutual
information estimation and hop-skipping logic; w/o PID
guard removes energy-aware PID correction from the con-
troller input; and Fixed C sets channel width C = 128
statically without dynamic adaptation.

This shows that: (1)Disabling mutual information esti-
mation causes the largest energy increase (+37.5%) and
significantly reduces precision (–1.8%); (2)Removing PID
control leads to unstable consumption and minor degra-
dation in precision; (3)Static channel width underutilizes
resource flexibility, resulting in moderate energy loss and
precision drop.

4.4. Sensitivity Analysis

We examine MLC-GNN’s sensitivity to important con-
trol thresholds and architectural elements in order to re-
spond to Q3 from our evaluation scope. In particular, we
change the starting channel width C, the skip threshold
τskip, and the boost threshold τboost and see how these
affect the accuracy and energy efficiency of the model.

We explore how MLC-GNN responds to different val-
ues of the controller’s thresholds τskip, τboost and channel
width C.

0.10 0.08 0.06 0.04 0.02 0.00
skip

87.5

88.0

88.5

89.0

Ac
cu

ra
cy

 (%
)

(a) Varying skip

Accuracy

0.00 0.02 0.04 0.06 0.08 0.10
boost

88.0

88.2

88.4

88.6

88.8

89.0

89.2

Ac
cu

ra
cy

 (%
)

(b) Varying boost

Accuracy

100 150 200 250
Channel Width C

88.6

88.8

89.0

89.2

89.4

Ac
cu

ra
cy

 (%
)

(c) Varying Channel Width C

Accuracy48

49

50

51

52

En
er

gy
 (m

J)

Energy

48

49

50

51

52

53

54
En

er
gy

 (m
J)

Energy

42.5

45.0

47.5

50.0

52.5

55.0

57.5

En
er

gy
 (m

J)

Energy

FIGURE 3. Sensitivity of energy and accuracy to controller
parameters.

We observe that: - τskip too low (< −0.05) leads to
excessive layer skipping and accuracy drop; - Increasing
τboost reduces over-computation; - Dynamic C helps main-
tain efficiency under fluctuating energy budgets.

4.5. Evaluation Summary

MLC-GNN exhibits strong generalization and energy ef-
ficiency on all graphs and devices that have been tested.
Its primary benefit is its runtime flexibility, which allows it
to selectively grow or shrink in response to power availabil-
ity and graph complexity. MLC-GNN dynamically adapts
its compute budget to real-world restrictions, which makes
it more appropriate for edge deployments than QGNN or



GraphSAGE, which use predefined techniques. Compared
to lightweight baselines such as S-GCN and DeltaGNN,
MLC-GNN offers competitive accuracy and significantly
higher precision while retaining its energy advantages.

5. Conclusion

In this work, we present MLC-GNN, a novel graph neu-
ral network architecture for edge devices that are subject
to energy constraints. MLC-GNN provides fine-grained
control over the energy-to-latency-to-accuracy trade-off by
dynamically modifying the model’s depth, precision, and
channel width in response to real-time mutual informa-
tion estimates and energy feedback. A PID-based energy
guard and a lightweight middle-layer controller, both of
which have low overhead requirements, make this design
possible. Comprehensive tests on four graph benchmarks
show that MLC-GNN matches or exceeds baseline accu-
racy and precision while cutting energy and latency by up
to 50%. These findings demonstrate how well MLC-GNN
adapts to various runtime limitations, which makes it a
good fit for deployment on real-world platforms including
embedded AI accelerators, mobile CPUs, and Internet of
Things nodes.

Looking forward, we identify two promising direc-
tions for extending this work: Dynamic neighbor selec-
tion, which integrates topology-aware routing policies that
adapt the neighborhood aggregation pattern per node or
per hop to further reduce redundant computation; and
Extreme compression, which explores ultra-low-bit quan-
tization (e.g., binary/ternary GNNs) and structured prun-
ing to push the boundaries of model compactness without
compromising inference robustness.

Overall, MLC-GNN represents a step toward making
GNN inference both adaptive and resource-aware, paving
the way for truly deployable graph intelligence at the edge.


