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Abstract: 
This paper explores a comparative analysis between three 

different control strategies: PID control, Classical Type-2 
Fuzzy Control, and Flexible Quantum Type-2 Fuzzy Control, 
with an emphasis on managing noisy second-order systems. By 
introducing a quantum-based fuzzy control model that 
eliminates the dependence on rigid rule sets, this study aims to 
demonstrate improvements in system adaptability and 
resilience against external disturbances. Performance is 
assessed through a set of key indicators including Mean 
Squared Regulation Error (MSRE), rise time, overshoot, 
settling time, and steady-state error. Results show that the 
proposed quantum fuzzy controller outperforms conventional 
methods, highlighting its potential for future intelligent control 
systems. 
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1. Introduction 

Controlling dynamic systems under the influence of 

noise and external disturbances remains a fundamental 

challenge across various engineering applications. 

Traditional approaches, particularly the Proportional-

Integral-Derivative (PID) controllers, have been widely used 

for their simplicity and effectiveness in a broad range of 

industrial processes [1]. However, their reliance on linear 

control assumptions often limits performance when dealing 

with nonlinearities and uncertain environments [2]. 
Fuzzy logic controllers (FLCs) emerged as a viable 

solution to this problem, offering a rule-based decision-

making framework capable of handling imprecision and 

uncertainty [3]. Classical Type-1 fuzzy controllers, while 

effective, still suffer limitations when environmental noise 

causes significant fluctuations in the system states. To 

overcome this, Type-2 fuzzy logic was introduced, 

embedding uncertainty within membership functions 

themselves to better cope with noisy and ambiguous 

information [4], [5]. Literature studies, such as Mendel's 

work on uncertain rule-based fuzzy logic systems [6], have 

emphasized the advantages of Type-2 fuzzy systems in 

modeling environmental disturbances more accurately 

compared to their Type-1 counterparts. 
Parallel to advancements in fuzzy logic, the field of 

quantum computing has shown remarkable growth. 

Quantum computing principles such as superposition and 

entanglement offer new possibilities for achieving 

computational acceleration and enhanced problem-solving 

capabilities [7], [8]. Researchers have explored the 

integration of fuzzy logic with quantum computation, 

resulting in the development of Quantum Fuzzy Controllers 

(QFCs) [9]. Recent studies, such as those by Acampora et al. 

[10], have demonstrated that quantum fuzzy inference 

engines can outperform classical systems in speed and 

robustness, particularly when implemented on noisy 

intermediate-scale quantum (NISQ) devices. 
Unlike classical fuzzy systems, quantum fuzzy 

controllers do not rely on predefined rule bases. Instead, 

information such as the error and its derivative are encoded 

into quantum states, and control actions are inferred through 

probabilistic measurements [11]. This flexibility provides an 

advantage in dynamically changing or highly uncertain 

environments, where rigid rule-based systems might fail. 
While theoretical studies and early-stage prototypes of 

quantum fuzzy inference engines have demonstrated 

potential benefits [12], [13], practical comparative 

evaluations between quantum fuzzy controllers and classical 

control strategies under noisy conditions are still limited. 

Addressing this gap, the present study systematically 

compares PID, Classical Type-2 Fuzzy, and Quantum Type-

2 Fuzzy Controllers using a noisy second-order dynamic 

system as a testbed. 
The main contributions of this paper are: (1) proposing 

a flexible Quantum Type-2 Fuzzy Controller without explicit 



 

 

rule bases; (2) providing a fair comparison against 

conventional control methods under identical noisy 

environments; and (3) presenting an in-depth analysis of key 

performance indicators such as MSRE, rise time, settling 

time, overshoot, and steady-state error. 

2. Control System 

The control system considered in this study is a classical 

second-order linear time-invariant (LTI) system. Such 

systems are fundamental in control engineering and 

accurately model a wide range of physical processes, 

including mechanical vibrations, electrical RLC circuits, and 

fluid dynamics. The mathematical model of the system is 

given by: 
 

�̈�(𝑡) + 𝑎1�̇�(𝑡) + 𝑎0𝑦(𝑡) = 𝑢(𝑡) + 𝑤(𝑡)   (1) 
 
Where 𝑤(𝑡)  denotes zero−mean Gaussian noise, 

injected with varying standard deviations (σ=0.05 to 0.2) to 

emulate real-world disturbances and 𝑢(𝑡) is the control 

signal. The coefficients indicate a moderately underdamped 

response, suggesting that without adequate control, 

oscillations may persist before reaching steady state.  
Second-order system behavior is largely determined by 

its natural frequency and damping ratio. The natural 

frequency dictates the speed of oscillations, while the 

damping ratio influences overshoot and stability. Accurate 

control strategies are required to modify these dynamics for 

desired performance criteria such as minimal rise time, 

acceptable overshoot, and quick settling. Studies on second-

order systems, such as those by Ogata [14], provide a 

comprehensive theoretical foundation for understanding 

these fundamental dynamics. 

2.1. PID Controller 

The PID controller is implemented as a baseline due to 

its proven track record in industrial applications. The PID 

control law is expressed as 
 

𝑢(𝑡) =  𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
   (2) 

 
Where 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) is the error between the 

reference input 𝑟(𝑡)  and the system output 𝑦(𝑡) . The 

proportional term 𝐾𝑝 offers immediate correction based on 

the present error, the integral term 𝐾𝑖 addresses cumulative 

errors to eliminate steady-state deviations, and the derivative 

term 𝐾𝑑 predicts and counteracts future trends to improve 

transient response. 
Although PID controllers are relatively easy to 

implement and tune, their performance in noisy or nonlinear 

environments can be suboptimal. Several studies, such as 

Astrom and Hagglund's analysis [1], have emphasized that 

PID controllers often require retuning or enhancement to 

cope with varying disturbances and system uncertainties. 

2.2. Fuzzy Type-2 

The Classical Type-2 Fuzzy Controller extends the 

traditional fuzzy logic paradigm by embedding uncertainty 

within the membership functions. Unlike Type-1 fuzzy sets, 

which map inputs to single-valued membership degrees, 

Type-2 fuzzy sets associate inputs with a range of 

membership values, described by a Footprint of Uncertainty 

(FOU) [5], [6]. This enables the controller to better model 

ambiguities in measurements and expert knowledge, offering 

greater robustness against noisy inputs. In operation, 

Classical Type-2 Fuzzy Controllers consist of four stages: 

fuzzification, rule evaluation, type-reduction, and 

defuzzification. Fuzzification maps crisp inputs into fuzzy 

sets with uncertain grades. Rule evaluation applies fuzzy 

logic rules based on these uncertain memberships. Type-

reduction, a critical step unique to Type-2 systems, collapses 

the fuzzy output sets into Type-1 fuzzy sets, typically using 

methods such as the Karnik-Mendel iterative algorithms [6]. 

Finally, defuzzification converts these reduced sets into crisp 

control outputs. 
By accounting for uncertainties explicitly, Type-2 fuzzy 

systems outperform Type-1 systems especially in dynamic 

environments with measurement noise and modeling 

inaccuracies. However, they also introduce additional 

computational complexity due to the type-reduction process, 

which can limit their real-time applicability unless optimized 

implementations are used.  

2.3. Flexible Quantum Fuzzy Type-2 

The Flexible Quantum Type-2 Fuzzy Controller 

represents an innovative convergence of fuzzy logic 

principles and quantum computing technologies to achieve 

robust decision-making under uncertainty. In classical Type-

2 fuzzy systems, uncertainty is modeled using membership 

functions with fuzzy grades, providing better noise tolerance 

compared to Type-1 fuzzy logic [5]. In quantum fuzzy 

systems, fuzzy inference operations are implemented 

through quantum circuits, taking advantage of quantum 

superposition and probabilistic measurement outcomes [9], 

[10]. The overall inference process begins by normalizing 

the input variables, typically the error and its derivative, into 

a suitable range such as . These normalized inputs are 

encoded into quantum states using rotational gates, most 



 

 

notably the gate, which maps classical information into 

quantum amplitudes [11]. The quantum circuit, constructed 

from these gates, leverages superposition to simultaneously 

represent multiple degrees of membership, effectively 

performing parallel evaluation of all potential fuzzy regions 

without explicitly defined rule bases [10]. 
Following state preparation, quantum measurements 

collapse the superposed states into basis states, where each 

outcome reflects probabilistic membership aggregation. The 

measurement results are then mapped to discrete control 

signals based on predefined associations between binary 

states and control levels [9]. As such, the Flexible Quantum 

Type-2 Fuzzy Controller dynamically adapts its control 

output based on probabilistic inference rather than 

deterministic rule-based computation. 
This architectural innovation confers several 

advantages. First, the elimination of rigid rule bases 

enhances flexibility and scalability, particularly in complex 

and uncertain environments [12]. Second, quantum 

parallelism significantly accelerates the inference process 

compared to classical fuzzy logic as the system complexity 

grows [10]. Third, the inherent probabilistic structure of 

quantum mechanics naturally complements the uncertainty-

handling philosophy of Type-2 fuzzy logic, offering 

improved robustness against noise, disturbances, and model 

inaccuracies [11]. 

3. Methodology 

The methodology employed in this study involves a 

simulation-based evaluation of three different controllers 

under identical noisy conditions. The second-order dynamic 

system is simulated using a Python environment, employing 

numerical integration via SciPy’s odeint function to solve the 

system's differential equations over a simulation horizon of 

20 seconds with a timestep of 0.1 seconds. 
For the PID controller, gains were set to 𝐾𝑝 =

1.0, 𝐾𝑖 = 0.5 𝑎𝑛𝑑 𝐾𝑑 = 0.1 based on standard tuning 

practices to ensure stability and acceptable transient response. 

For the Classical Type-2 Fuzzy Controller, the input 

variables (error and error derivative) were mapped to fuzzy 

membership functions with uncertainty bounds, and fuzzy 

rules were constructed to map these inputs to control actions. 

Defuzzification was performed using a type-reduction 

approach followed by centroid computation. 
The Quantum Type-2 Fuzzy Controller implementation 

employed Qiskit’s AerSimulator to model quantum circuits. 

The normalized values of error and its derivative were 

encoded into quantum states using rotation operations. 

Measurements of the quantum states were mapped 

probabilistically to discrete control actions based on 

predefined encoding schemes. Each controller was subjected 

to the same set of external disturbances, generated as 

Gaussian noise with zero mean and small variance. 
Performance metrics considered include Mean Squared 

Regulation Error (MSRE), rise time, settling time, overshoot, 

and steady-state error. Rise time is defined as the time 

required for the output to reach 90% of the final value, while 

settling time is defined as the time the system output remains 

within 5% of the final value without leaving this band. 

Overshoot measures the maximum output deviation relative 

to the target value, expressed as a percentage. 

4. Simulation Result and Discussion 

The simulation results highlight clear distinctions 

among the three controllers. The Quantum Type-2 Fuzzy 

Controller provided the best overall performance. It achieved 

a fast rise time of 0.5 seconds, a low overshoot of 10%, and 

the smallest steady-state error of 0.0549. Its MSRE value 

was also the lowest at 0.0624, reflecting superior noise 

tolerance and tracking accuracy. Although settling times 

could not be precisely determined due to persistent noise, the 

quantum controller maintained close proximity to the 

reference signal across the simulation duration. 
The Classical Type-2 Fuzzy Controller demonstrated a 

smooth response with zero overshoot but suffered from a 

significant steady-state error of 0.3021 and a relatively 

slower rise time of 0.6 seconds. Its MSRE value was the 

highest among the three methods, indicating inferior tracking 

performance under noisy conditions. 
The PID Controller achieved the fastest initial rise time 

of 0.5 seconds, matching that of the Quantum Fuzzy 

Controller, but it exhibited a considerable overshoot of 

49.63%. Although the steady-state error was lower compared 

to the Classical Fuzzy Controller (0.0558), the large 

overshoot may lead to instability or unacceptable transient 

behavior in certain practical applications. 
  



 

 

TABLE 1. Performance Summary 

Controller 
Performance 

MSRE Rise Time (s) Settling Time (s) Overshoot (%) Steady-State Error 

Flexible Quantum Fuzzy 0.0642 0.5000 NaN 10.00 0.0549 

Fuzzy Type-2 0.1284 0.6000 NaN 0.00 0.3021 

PID 0.0746 0.5000 NaN 49.63 0.0558 

 

FIGURE 1. Control Signal Comparison 

 

 

FIGURE 2. System Output Comparison 



 

 

Figure 1 presents the control signal comparison among 

the three controllers. It is observed that the PID controller 

produces the highest magnitude control actions with 

noticeable oscillations, particularly in the early transient 

phase. The Classical Fuzzy Controller exhibits smoother but 

limited control effort, whereas the Quantum Fuzzy 

Controller maintains a moderate control amplitude with less 

fluctuation compared to PID. 
Figure 2 shows the system output response comparison. 

The PID controller achieves rapid convergence but at the 

expense of a high overshoot, whereas the Classical Fuzzy 

Controller responds slowly and fails to reach the reference. 

The Quantum Fuzzy Controller provides a good balance 

between rise time, overshoot, and steady-state accuracy, 

closely following the reference trajectory with minimal 

oscillations. 
Overall, the Flexible Quantum Type-2 Fuzzy Controller 

outperformed both classical approaches in terms of 

regulation error, steady-state precision, and transient 

response quality. These findings align with the theoretical 

expectations regarding the advantages of quantum-based 

fuzzy inference in managing noisy environments. 
 

5. Conclusions 

This study conducted a detailed comparative analysis of 

PID, Classical Type-2 Fuzzy, and Flexible Quantum Type-2 

Fuzzy Controllers for the robust control of noisy second-

order dynamic systems. The results revealed that while the 

PID controller provides fast initial response, it suffers from 

significant overshoot, which may compromise system 

stability. The Classical Type-2 Fuzzy Controller offered a 

smoother control action with zero overshoot but exhibited 

higher steady-state error and slower response. In contrast, the 

Flexible Quantum Type-2 Fuzzy Controller consistently 

demonstrated superior performance across all evaluated 

metrics. It achieved the lowest MSRE, minimal steady-state 

error, acceptable overshoot, and a rapid rise time, confirming 

its robustness and adaptability to external disturbances. The 

results validate the potential of flexible quantum fuzzy 

inference as a promising approach for the next generation of 

intelligent control systems, particularly in scenarios where 

resilience to noise and uncertainty is critical. 
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