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Abstract: 
Unplanned machinery failures remain a persistent 

challenge in manufacturing, leading to costly downtime, rising 

maintenance expenses, and operational inefficiencies. While 

traditional reactive and preventive maintenance strategies 

offer some mitigation, they often fall short in addressing these 

issues effectively. This paper investigates a novel approach to 

fault detection using the Drunken Flower Pollination Algorithm 

(DFPA) combined with audio pattern analysis.  By detecting 

subtle anomalies in sound signatures, the system proactively 

identifies potential failures, minimizing unplanned outages 

and optimizing maintenance schedules. For comparison, the 

DFPA is also tested using traditional vibration-based fault 

detection methods.  The results demonstrate that while 

audio-based analysis is less conventional than vibration 

monitoring, it delivers competitively accurate 

results—offering a viable alternative for predictive 

maintenance. 
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1. Introduction 

Malaysia is a vibrant and strategically positioned 

economy in Asia, known for its diverse industrial base and 

growing global influence. With a population of 32.98 

million and a land area of 330,803 km² [1, 2], Malaysia 

continues to solidify its role as a manufacturing 

powerhouse. Industry contributes 36.8% to the nation's 

GDP, driven by key sectors such as oil and gas, electronics, 

and palm oil production [4]. In terms of employment, 

Malaysia relies heavily on its services and industrial sectors, 

while agriculture, construction, and mining also play 

significant roles in supporting the economy. As a key player 

in the global supply chain, Malaysia contributes to a wide 

range of industries, from electronics and energy to 

infrastructure and resource-based manufacturing.  

Manufacturers rely on high-performance machinery to meet 

production demands. However, unexpected machine 

failures lead to unplanned downtimes, increased 

maintenance costs, and reduced operational efficiency.  

Predictive maintenance is transforming manufacturing by 

enabling companies to optimize the performance of 

high-value machinery. Traditional maintenance strategies, 

such as reactive (failure-based) and preventive (time-based) 

approaches, often result in unplanned downtime, increased 

costs, and operational inefficiencies. This paper describes a 

swarm intelligent preventive maintenance system to 

analyze real-time acoustic sensor data and the traditional 

vibration data for early fault detection. 

By proactively identifying machine faults before they 

end in total breakdown, this system can significantly reduce 

unplanned downtime, ensuring continuous production flow 

and minimizing costly emergency repairs. This approach 

also extends machine lifespan by reducing resource waste 

and enhances workplace safety by preventing potentially 

hazardous mechanical failures. 
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2. Problem Statement 

Despite advancements in automation and Industry 4.0, 

unplanned machinery failures remain a significant 

challenge for manufacturers. These failures disrupt 

production schedules, halting operations, delaying 

deliveries, and damaging client trust. They also increase 

operational expenses due to high maintenance costs, 

including unscheduled repairs and premature part 

replacements.  Machine downtime carries substantial 

financial implications for many manufacturers. In Malaysia, 

unplanned downtime interrupts production, resulting in lost 

productivity, delayed shipments, and strained customer 

relationships. This often leads to revenue losses and higher 

costs from emergency repairs and expedited shipping [5]. 

Another example is in Taiwan, where downtime has a 

particularly pronounced impact in industries like 

semiconductor manufacturing. For example, a temporary 

halt in operations at Taiwan Semiconductor Manufacturing 

Company (TSMC) due to unforeseen events on 3 April 

2024 was estimated to cost the company US$60 million, 

underscoring the urgent need for robust disaster 

management and maintenance strategies [6]. 

In many of these countries where manufacturing play a 

very significant role, they will face persistent challenges in 

minimizing downtime to maintain competitiveness and 

operational efficiency. Additionally, the absence of 

real-time condition monitoring accelerates equipment 

deterioration, shortening machinery lifespan. Sudden 

mechanical failures not only jeopardize workplace safety 

and compliance but also cause energy inefficiencies, as 

malfunctioning equipment consumes excessive power. This 

drives up costs and contributes to environmental concerns. 

Addressing these issues requires a proactive, data-driven 

approach to machine maintenance. 

3. Objectives 

This paper presents a novel approach that integrates 

swarm intelligence - a Flower Pollination Algorithm (FPA) 

enhanced with drunken walk modification to achieve robust 

fault identification. It addresses data and time scarcity 

challenges.  While machine learning (ML) typically 

requires large training datasets and training duration, the 

feature-based FPA compensates for limited data by 

optimizing feature extraction and improving model 

generalization in a shorter time. While traditional 

maintenance aims with schedule, our system enhances this 

regime by precisely classifying fault types once fault 

detected. This capability enables targeted interventions, 

reducing escalation risks and informing future predictive 

models. By leveraging artificial intelligence, the system can 

optimize maintenance schedules, predicting the likely 

timing and location of servicing needs, while eliminating 

unnecessary inspections. Together, these features bridge 

reactive and predictive maintenance, minimizing unplanned 

downtime and laying the groundwork for proactive failure 

prevention.  This project introduces two key contributions, 

viz 

i. A novel framework that uniquely combines swarm 

intelligence with PCA for superior fault detection, 

ii. Utilizing audio data rather than the more common 

vibration data for better accuracy and overall total 

system cost. 

4. Prior Work 

The review of prior work systematically examines 

preventive maintenance methodologies by focusing on 

swarm intelligence, anomaly detection, and sensor-based 

monitoring techniques.  It prioritizes AI-enhanced 

preventive maintenance strategies, emphasizing swarm 

intelligence models, sensor data integration, and industrial 

applications. It systematically excludes traditional 

maintenance strategies, AI research, and purely 

hardware-focused studies, thus ensuring it will capture the 

latest advancements in intelligent fault detection, real-time 

anomaly classification, and AI-driven industrial 

maintenance.  The review is divided into two key areas of 

conventional AI and sensor-based and vibration analysis. 

4.1. Conventional (non-DL) approaches 

Traditional machine learning remains vital in 

predictive maintenance, especially when interpretability or 

efficiency is needed. Support Vector Machines (SVMs) 

excel at vibration and acoustic fault detection [15], while 

Random Forests outperform Decision Trees in sensor data 

analysis [12]. Bayesian Networks model failure 

probabilities, KNN detects anomalies in real-time, and PCA 

isolates key fault indicators. For sequential data, Hidden 

Markov Models track degradation, and Wavelet Transform 

precisely locates vibration faults [13]. These methods 

complement deep learning, offering transparency and 

effectiveness in resource-constrained scenarios. 

4.2. Sensor-Based and Vibration Analysis Approaches 

Karrupusamy [12] explored PdM in manufacturing 

using Industrial Internet-of-Things (IIoT) sensors and 

Random Forest (RF) models, proving RF’s higher accuracy 

over Decision Trees in fault detection. Pavithra and 



 

 

Ramachandran [13] focused on vibration analysis, 

integrating CNN and Wavelet Transform (WT) to reduce 

false positives and enhance detection accuracy. Tama et al. 

[14] reviewed deep learning for fault detection in rotating 

machinery, demonstrating how CNNs and Recurrent Neural 

Networks (RNNs) effectively classify vibration anomalies. 

Tambake et al. [15] investigated cutting tool fault diagnosis 

in CNC machines, utilizing vibration and speed sensors 

with ML models such as SVM, CNN, and Bayesian 

classifiers. Lastly, Rajapaksha et al. [16] analyzed acoustic 

monitoring for induction motors, showcasing how 

AI-enhanced audio signal processing outperforms 

traditional vibration-based fault detection.  The literature 

review highlights three dominant approaches in predictive 

maintenance: (1) deep learning (SAE, CNN, LSTM) for 

superior anomaly detection, (2) traditional AI (SVM, RF, 

Bayesian Networks) for interpretability and efficiency with 

small datasets, and (3) sensor methods (IoT, 

vibration/acoustic analysis) for fault data collection.  

Collectively, these advancements underscore the critical 

synergy of AI, deep learning, and sensor integration in 

modern predictive maintenance systems. 

5. Methodology 

This system integrates AI, drunken flower pollination 

algorithm (DFPA), and real-time sensor data to monitor 

machine health and prevent failures. The key components 

are a high sensitivity microphone and vibration sensors 

connected to a computer laptop for data collection at the 

same time. 

 

 
FIGURE 1. Sennheiser MK4 

Large-diaphragm 
Condenser 

Microphone 

FIGURE 2. Monitoring an electric 

centrifugal pump 

The vibration sensor used here is the ‘ifm VVB001’, an 

industrial-grade microelectromechanical systems (MEMS) 

sensor type, a tiny device that integrates sensors, actuators, 

and mechanical structures on a microscopic scale, using 

semiconductor fabrication techniques. It is designed to 

monitor machine conditions by detecting vibration levels. It 

can measure vibrations across a frequency range of 2 to 

10,000 Hz and within an acceleration range of 0 to 490.3 

m/s², making it effective for detecting both low- and 

high-frequency mechanical faults. Two of these VVB001 

vibration sensors were used to pinpoint two different 

positions on the centrifugal pump for better detection 

accuracy. Audio and vibration data will be collected 

simultaneously to ensure the consistency of the dataset. 

 

FIGURE 3.  Mounting positions of the two vibration sensors  

Figure 3 shows the experimental mounting positions of the 

two vibration sensors at (a) and (b)  

5.1. Acoustic Data Collection Setup 

The acoustic data collection system uses a Sennheiser 

MK 4 Large-diaphragm Condenser microphone (figure 1), 

SSL audio interface, and XLR connections. The 

microphone is mounted on a stand, connected via XLR, and 

interfaced with a computer laptop. Proper gain calibration 

and real-time monitoring are ensured using headphones. 

The microphone will be positioned at three different 

locations: top, side, and bottom (figure 4) to analyze the 

variations. Five-minute recordings are taken for both 

normal and faulty electric centrifugal pump (figure 2) 

conditions using a sound recorder. A total of 4 conditions of 

the pump were collected for audio and vibration based and 

the snapshot of the normal (a) and the 3 faults classes (b, c, 

d) of audio data are shown in figure 5. 

 
FIGURE 4. Position of Microphone 



 

 

     

a) Normal  b) Looseness   c) Blockage   d) Leakage 

FIGURE 5. Samples of audio data of the electric pump 

5.2. Drunken Flower Pollination Algorithm 

The Flower Pollination Algorithm (FPA), introduced by 

Xin-She Yang in 2012, is a nature-inspired optimization 

technique based on the principles of flower pollination. 

Pollination in nature occurs through biotic 

(cross-pollination) and abiotic (self-pollination) processes, 

which FPA translates into global and local search strategies. 

FPA operates on four key principles closely mimicking how 

pollination occurs in nature —global pollination via Lévy 

flights for exploration, local pollination for refinement, 

flower constancy to stabilize solutions, and a switch 

probability to balance global and local search.  These 

mechanisms allow FPA to efficiently explore and exploit 

solution spaces, making it effective for solving complex 

real-world optimization problems. More details can be 

found in Yang's paper.  Nevertheless, while FPA has 

achieved good convergence rate and results, further 

improvement can be done by modifying the algorithm to 

improve the performance of the FPA.  Hence, Lee and Lai 

were motivated to come up with improvements to the FPA 

by incorporating the intoxication model into the FPA. Since 

the intoxicated person in the intoxication model is walking 

in a staggered manner, this inspired the manipulation of the 

Lévy distribution of the FPA to the intoxication model for 

the global pollination in the DFPA.  This had been tested 

to successfully identify the correct grade of Edible Birds 

Nest [8]. As this works on extracted features, a total of 16 

types of features were extracted to be used by the DFPA to 

correctly identify the machine condition.  168 samples are 

used for training and 72 for testing, with each sample 

segmented from 5-second intervals. 

5.3. Principal Component Analysis (PCA) 

To improve classification performance and reduce 

computational complexity, Principal Component Analysis 

(PCA) was applied to address the issue of high-dimensional 

and partially irrelevant feature sets. PCA transforms 

correlated features into uncorrelated principal components, 

ranked by the variance they capture. In this study, PCA was 

applied exclusively to the feature space, excluding class 

labels, and a cumulative variance approach was used to 

determine the optimal number of components. An 

automated hypertuning process evaluated variance 

thresholds ranging from 50% to 100%, selecting the 

threshold that achieved the highest average classification 

accuracy. This adaptive dimensionality reduction strategy 

enabled the construction of a compact and informative 

feature set, enhancing both model accuracy and robustness 

across trials. 

5.4. Features Extraction 

Unlike image-based tasks, this project focuses on 

feature extraction from sound waves using the Discrete 

Flower Pollination Algorithm (DFPA) as a window-based 

method. Continuous audio signals are segmented into time 

windows, with DFPA used to extract representative features 

from each segment for clustering. Each window is reduced 

to a single point, with DFPA ultimately identifying cluster 

centroids. Additionally, as categorized by Swapna Mol 

George et al. [17], acoustic features are classified into 

continuous, spectral, and TEO-based types. 

  

 

FIGURE 6. Taxonomy of Sound Feature [17] 

 

Table 1 demonstrates that the DFPA+PCA model is 

effective in recognizing various machine conditions. When 

comparing audio and vibration data, audio data offer 

broader and more reliable coverage around the centrifugal 

pump, leading to more robust results. In contrast, vibration 

data are captured from fixed positions, making them more 

sensitive to nearby faults but less effective in detecting 

faults that occur farther away. 

6. Results and Discussion 

The synergy between DFPA’s chaotic, exploratory 

nature and PCA’s dimensionality reduction and denoising 

capabilities results in a hybrid method that is not only more 

accurate but also more stable and interpretable. This 



 

 

DFPA+PCA method effectively detects centrifugal pump 

irregularities, with notable differences observed between 

audio and vibration data. Vibration sensors, mounted at 

fixed points near the shaft, provide consistent but limited 

spatial coverage. In contrast, microphones placed above, 

besides, and especially beneath the pump capture a wider 

range of acoustic signals, offering richer input for fault 

detection. 

Audio data consistently outperforms vibration data at 

both 22.2 Hz and 42.2 Hz, particularly when microphones 

are positioned at the bottom or side of the pump, locations 

that are more sensitive to airborne cues like pressure shifts 

and harmonic distortions. Vibration-based detection 

improves slightly at higher frequencies due to stronger 

surface resonances but remains less responsive to 

distributed faults such as looseness or leakage. 

 
TABLE 1. Comparison between Audio and Vibration data at different 

frequencies and different positions of microphone. (Vibration 

sensors are fixed) 

Frequency 

(Hz) 

Speed 

(rpm) 

Audio Vibration 

Microphone Positioned Above Pump 

Shaft (%) 

22.2 1294 97.86 90.12 

42.2 2435 99.63 99.019 

(a) Positioned above the pump shaft 

Frequency 

(Hz) 

Speed 

(rpm) 

Audio Vibration 

Microphone Placement at Side of 

Pump Shaft (%) 

22.2 1294 99.52 88.87 

42.2 2435 95.611 86.80 

(b) Positioned at the side of the pump shaft 

Frequency 

(Hz) 

Audio Vibration 

Microphone Positioned Beneath Pump Shaft (%) 

22.2 99.80 83.13 

42.2 100.00 95.76 

(c) Positioned beneath the pump shaft 

According to confusion matrix in TABLE 2, 

misclassification in the audio-based detection system 

mainly occurred when the microphone was placed at the top 

of the pump, where its position may be focused more on 

capturing the operational sounds of the shaft rather than the 

subtle noises generated by leakage. In leakage conditions, 

the acoustic changes are often minimal and easily masked 

by dominant mechanical sounds, especially since the strong 

suction and operating frequency of the pump can suppress 

or neutralize the audible cues of small leaks. As a result, the 

system occasionally failed to differentiate leakage from 

normal operation, leading to misclassification. 

For vibration-based detection, the confusion between 

fault types such as blockage, leakage, and looseness 

stemmed from the overlapping vibrational patterns they 

produced, particularly at lower frequencies. The sensors, 

positioned above the pump, had limited sensitivity to 

localized fault vibrations, making it difficult to distinguish 

between subtle mechanical anomalies. Additionally, 

structural noise and signal damping through the pump body 

likely contributed to the ambiguity, causing the model to 

misinterpret vibration signals and assign incorrect fault 

classes. 

TABLE 2.  Confusion Matrix for Microphone Positioned Above Pump 

Shaft 

Data Condition 

Confusion Matrix When 

Microphone Positioned Above 

Pump Shaft 

Nor. Block. Leak. Loos. 

Audio 

Nor. 17 0 1 0 

Block. 0 18 0 0 

Leak. 4 0 14 0 

Loos. 0 0 0 18 

Vibration 

Nor. 73 0 4 0 

Block. 8 66 3 0 

Leak. 8 2 85 0 

Loos. 0 0 3 91 

7. Conclusions 

This paper directly addresses manufacturing 

inefficiencies, unplanned downtimes, and rising 

maintenance costs by offering a data-driven predictive 

maintenance solution. By integrating AI and real-time 

sensor monitoring, manufacturers can significantly reduce 

disruptions, lower costs, and improve sustainability, 

ensuring long-term competitiveness in the evolving 

industrial landscape. 

While we have successfully implemented this and 

tested on an electric centrifugal pump, we plan to expand 

testing on other types of manufacturing machinery and 

real-world shop floor environments which will allow us to 

further refine and optimize the system’s performance 
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