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Abstract: 
Liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) serves as a key tool for the test of lipophilic 

substances in laboratory medicine and is widely employed in 

the analysis of coenzyme Q10 (CoQ10) and 25-hydroxyvitamin 

D (25OHD). In this paper, fuzzy concept was applied to 

improve the LC-MS/MS methods used for CoQ10 and 25OHD 

detection. The focus was placed on selecting the optimal 

mobile phase for CoQ10 analysis and examining the 

differences between LC-MS/MS and chemiluminescence 

immunoassay (CLIA) methods for 25(OH)D measurement. 

Through screening various organic phase combinations and 

employing fuzzy inference, the optimal mobile phase ratio for 

CoQ10 test is determined to be methanol and isopropanol at a 

ratio of 8:2. Additionally, fuzzy logic was employed to analyze 

the variations in 25OHD concentrations across different sexes 

and age groups. The results showed that women aged 30–40 

exhibited greater differences in 25(OH)D levels compared to 

other groups. This study shows that the use of fuzzy concepts 

can enhance the adaptability and accuracy of LC-MS/MS 

detection, offering a novel approach to the analysis of 

lipophilic substances. 
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1. Introduction 

With the rapid advancement of science and technology, 

artificial intelligence (AI) has made remarkable progress, 

demonstrating powerful computational capabilities and high 

accuracy, and has been widely applied across various fields 

[1]. As a critical component of the medical domain, 

laboratory medicine has achieved a high degree of 

automation with emphasis on the ability to reason at the 

human level. In recent years, the application of AI in 

laboratory medicine has garnered significant attention. The 

vast number and variety of testing items, coupled with the 

continuous iteration, updating of testing methods, and 

technological advancements, highlight the potential of AI in 

this field [1]. 

However, in the biomedical field, many concepts are 

inherently ambiguous or uncertain [2], making precise 

definitions challenging. As illustrated in Figure 1, some 

concepts are often described using imprecise terms such as 

“good” or “poor.” For example, the statement “poor 

public health conditions exacerbate the spread of infectious 

diseases” uses “poor” as a term that has different ways 

to quantify. Among various AI technologies, fuzzy logic 

offers a significant advantage in addressing such ambiguous 

concepts by providing reasoning. By transforming vague 

linguistic variables into quantifiable data, a fuzzy system 

enables quantitative reasoning, thereby facilitating the 

resolution of such fuzzy problems [3, 4].  

 
FIGURE 1. Fuzzy logic operation diagram. In fuzzy logic, there is 

typically no clear distinction between "good" and "poor"; instead, it often 
lies in between. 

In recent years, the application of LC-MS/MS in 

laboratory medicine testing has shown a significant increase. 

Compared to many other testing technologies, LC-MS/MS 

offers high specificity and strong resistance to 

cross-reaction interference, enabling effective 
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differentiation of similar compounds [5, 6], such as vitamin 

D2 and D3. Its exceptional sensitivity, with detection limits 

reaching pg/ml, allows for the precise detection of 

substances at extremely low concentrations [6]. 

Furthermore, this technology decreases manual intervention, 

significantly improving reproducibility [5]. Its integration 

with AI technologies is also on the rise, demonstrating 

considerable potential in areas such as optimization of 

experimental conditions and ion source selection [7]. 

Lipid-soluble substances have consistently played a 

significant role in LC-MS/MS analysis, with 

25-hydroxyvitamin D (25(OH)D) and coenzyme Q10 

(CoQ10) being key components. The levels of these two 

substances are closely related to various diseases. 25(OH)D 

serves as a critical indicator of vitamin D status in the body, 

positively contributing to bone health and chronic disease 

prevention [8]. On the other hand, CoQ 10 is significantly 

linked to the occurrence and progression of cardiovascular 

diseases (CVD) [9]. 

However, several uncertainties persist in studies 

utilizing LC-MS/MS for the detection of lipid-soluble 

substances such as CoQ10 and 25(OH)D [10]. For instance, 

in the methodological development for CoQ10, selecting 

the optimal mobile phase ratio requires balancing safety 

and optimal peak time. Regarding 25(OH)D, differences in 

results between LC-MS/MS and chemiluminescence 

immunoassay (CLIA), beyond methodological variations, 

may be influenced by other factors, potentially affecting the 

accuracy of LC-MS/MS detection [6].  

The fuzzy concept offers promising potential to 

address these relatively ambiguous issues to some extent. 

Thus, this study aims to investigate the potential of using 

fuzzy in optimizing LC-MS/MS for the testing of 

lipid-soluble substances (CoQ10 and 25(OH)D), by 

thoroughly analyzing and addressing methodological 

uncertainties. Specifically, the study will focus on 

optimizing the mobile phase ratio for CoQ10 detection to 

achieve an ideal balance between safety and peak time. 

Concurrently, it will explore the factors contributing to 

discrepancies in 25(OH)D results between LC-MS/MS and 

CLIA, assessing the impact of potential variables beyond 

methodological differences on detection accuracy. By using 

fuzzy logic for quantitative reasoning of these ambiguous 

issues, this study seeks to resolve key challenges in CoQ10 

and 25(OH)D detection and also to provide valuable 

insights for addressing similar issues in the testing of other 

substances. Ultimately, this study strives to improve the 

precision and reliability of LC-MS/MS testing, offering 

innovative technical support for laboratory medicine 

testing. 

 

2. Methods 

LC-MS/MS is considered the gold standard for 

detection 25(OH)D due to its ability to differentiate 

between 25(OH)D2 and 25(OH)D3 [6]. However, in 

clinical practice, CLIA is widely used for its simplicity and 

speed [6]. Investigating the differences between these two 

methods can provide valuable insights for clinical testing 

and offer a robust basis for optimizing LC-MS/MS. Thus, 

this research collected 138 random serum samples from 

routine physical examinations to analyze the differences in 

detection results while employing fuzzy logic to explore 

whether these discrepancies are influenced by additional 

factors such as age, gender. Furthermore, to improve the 

testing method for CoQ10, this study focuses on screening 

mobile phases by employing fuzzy concept to determine the 

optimal mobile phase ratio.  

2.1. Samples used 

In this paper, we have utilized the samples collected by 

the Sichuan Taikang Hospital (Chengdu, Sichuan Province, 

China). The samples provided were collected from patients 

undergoing 25(OH)D chemiluminescence immunoassay 

(CLIA) testing during routine physical examinations at 

Sichuan Taikang Hospital (Chengdu, Sichuan Province, 

China) between August 2024 and January 2025. Samples 

that were positive for cardiovascular diseases or severe 

infectious diseases (hepatitis B, hepatitis C, syphilis, or 

HIV) were excluded. The data used in this study were 

provided by Sichuan Taikang Hospital and have gained 

approval by the ethics committee of the Sichuan Taikang 

Hospital. 

2.2. Using Fuzzy to analyse the testing of 25(OH)D   

The differences between the two detection methods 

(LC-MS/MS and CLIA), beyond methodological factors, 

could also be influenced by other variables such as age and 

gender. This study establishes a multi-input-one-output 

(MISO) structural model, as shown in Figure 2. To establish 

the fuzzy rules from the input-output data, Generating 

Fuzzy Inference System (GENFIS) in the Matlab toolbox 

was used to build the fuzzy rule inference system. This 

study uses the 25(OH)D concentration values from the 

collected samples detected by LC-MS/MS and CLIA, with 

age and gender as the input variables and the difference 

coefficient between the two methods as the output variable. 

The input and output variables were standardized within the 

interval of [0,1]. 



 

 

 
 

FIGURE 2. The MISO Fuzzy model. CLIA and LC-MS individually 

represent their testing results of 25(OH)D 

GENFIS provided in Matlab Fuzzy Toolbox utilizes 

FCM clustering to create the fuzzy inference system. The 

overall equation of the GENFIS is given as follows (1): 

    (1) 

 

D is the total number of data points, N represents the 

number of sets, m(>1) shows the fuzzy overlap degree, xi is 

the i-th data point, cj is the j-th cluster centre, and μij means 

the membership degree of xi in the j-th sets. 

2.3. Fuzzy inference for mobile phase optimization in 

LC-MS/MS detection of CoQ10 

The selection of the mobile phase is crucial for mass 

spectrometry detection, as its composition ratio directly 

determines the elution time and sensitivity. The experiment 

involved preliminary screening of mobile phase 

combinations using standards and clinical samples, which 

were subjected to LC-MS/MS testing with different mobile 

phases after pretreatment. Regarding the selection of the 

mobile phase, due to the large molecular weight (863.34) 

and strong hydrophobicity of CoQ10, which resulted in 

strong retention in the chromatographic column and 

difficulty in elution, a pure organic phase was used for 

elution. Conventional elution reagents (methanol, 

acetonitrile, ethanol, and isopropanol, all containing 0.1% 

formic acid) and their combinations were screened (as 

shown in Table 1). Based on the results in Table 2, groups 1, 

2, 5, 7, and 8 were excluded due to low signal-to-noise ratio 

(S/N), poor retention, or excessively long elution time, as 

evaluated by retention time and S/N. For groups 3, 4, and 6, 

a comprehensive comparison of toxicity and cost was 

conducted: toxicity ranked as acetonitrile > methanol > 

isopropanol > ethanol, and price ranked as ethanol > 

acetonitrile > isopropanol > methanol. Ultimately, group 3 

(a methanol-isopropanol solution containing 0.1% formic 

acid) was selected as the mobile phase. 

TABLE 1. Mobile phase grouping information 

Group Component 1 (0.1% by volume) Component 2 (99.9% by volume) 

1 Formic acid Methanol 

2 Formic acid Acetonitrile 

3 Formic acid Methanol:Isopropanol ( 7:3) 

4 Formic acid Methanol:Ethanol (5:5) 

5 Formic acid Methanol:Acetonitrile ( 5:5) 

6 Formic acid Ethanol:Acetonitrile (5:5) 

7 Formic acid Ethanol 
8 Formic acid Isopropanol 

 

TABLE 2. Comparison of chromatographic parameters across 

different groups 

Group 
Peak 

Area 

(mV.s) 

Peak 

Height 

(mV) 

Retention 

Time(min) 

Half Peak 

Width 

(min) 

S/N 

1 481500 67650 3.77 0.11 4290.6 
2 351800 24360 8.76 0.22 1825.6 

3 470500 133800 1.24 0.05 3948 

4 522100 156600 1.12 0.05 2820.8 
5 512000 47720 6.27 0.16 4323.1 

6 75640 21650 1.24 0.05 2562.3 

7 1222000 376900 0.59 0.05 309.7 

8 896900 266500 0.39 0.05 3669.1 

 

However, the earliest elution time is 1.16 min (with an 

isopropanol-to-methanol ratio of 3:7), while the optimal 

elution time is approximately 33.33%-66.66% of a single 

injection duration [11]. Therefore, fuzzy inference is 

employed to decrease the appropriate elution time and 

select the most suitable elution time. The model inputs were 

the proportions of methanol (Figure 3A) and isopropanol 

(Figure 3B), with initial concentrations set at 70% methanol 

and 30% isopropanol (y-axis value of 1). The output was 

the elution time, with the initial starting point being the 

earliest elution time of 1.16 min (y-axis value of 1). The 

input function adopted the triangular function with an 

equidistant distribution, which is most commonly used in 

fuzzy inference for biomedical applications; in the output 

model, each membership function followed an equilateral 

triangular distribution. The midpoint of the membership 

function for the medium level of elution time is selected at 

the median value of a single injection duration, 1.75 min, 

with the two endpoints determined as 1.455 min and 2.045 

min based on the equidistant distribution principle (equal 

intersection areas), as shown in Figure 3. The fuzzy rules 

were based on the “IF-THEN” rule: 

1. If methanol is high and isopropanol is low, the retention 



 

 

time is high. 

2. If methanol is medium and isopropanol is medium, the 

retention time is medium. 

3. If methanol is low and isopropanol is high, the retention 

time is low. 

The calculation formula is adopted in (2): 

 

              (2) 

The model predicts the ratio range of methanol to 

isopropanol from 7:3 to 9:1. 

 

FIGURE 3. The membership function of the mobile phase optimization in 

testing CoQ10; The blue, green, and red lines represent low, medium, and 

high levels, respectively. 

3. Results 

3.1 Fuzzy analysis of testing 25(OH)D 

GENFIS generates membership functions by 

extracting the relationship between input and output 

variables from 138 samples (as shown in Figure 4). The 

results indicated that the variability across age groups in 

males exhibits no significant change. The variability in 

females aged 30-40 is higher than that in other age groups 

and all male age groups (see Table 3). 

 

FIGURE 4. The membership function of the fuzzy analysis of 25(OH)D; 

Input1, input2, input3, and input4 are the CLIA testing results, LC-MS/MS 
testing results, gender, and age, respectively; Bule, red and yellow lines 

separately represent cluster1, 2 and 3.  

TABLE 3. The prediction of differences in the women’s between 
different ages by the fuzzy system 

Age The prediction of difference  

20 0.299 

30 0.348 
35 0.349 

40 0.342 

50 0.285 

>60 < 0.27 

3.2 Fuzzy inference for mobile phase optimization 

The model predicts the elution times for 

methanol-to-isopropanol concentration ratios of 8:2, 8.5:1.5, 

and 9:1, acquiring results of 1.76 min, 2.29 min, and 3.2 

min, respectively. The model of the 8:2 and 8.5:1.5 are 

shown in Figure 5. The 3.2 min elution time is close to the 

end of a single injection duration and is therefore discarded. 

The optimal elution time range is between 1/3 and 2/3 of a 

single injection duration (33.33%-66.66%) [11]. Although 

2.29 min falls within this range, it is too close to the lower 

limit. Considering that experimental errors may cause the 

elution time to vary and not remain consistent each time, 

the 8:2 ratio is selected as the mobile phase concentration 

ratio for LC-MS/MS testing of CoQ10. 

 

FIGURE 5.The prediction elution times of the fuzzy inference system; A 

for a methanol-to-isopropanol ratio of 8:2, and B for 8.5:1.5. 

3.3 Fuzzy inference validation 

To analyze the difference inference between 

LC-MS/MS and CLIA in testing 25(OH)D by the fuzzy 

system, an additional 24 samples that were not used when 

establishing the model were used as testing. The additional 



 

 

data were from a test group (10 women aged 30-40 years) 

and a control group (14 individuals from other 

demographics). The threshold is set as the mean difference 

value of these additional samples between the two methods, 

determined to be 2.95 ng/mL. The relative risk (RR) 

between the two groups is evaluated as 2.1 (95% CI: 

0.7953-5.5442) (as shown in Table 4). This verification 

result provides early support for the fuzzy inference. 

However, as the confidence interval includes 1, further 

validation with an expanded sample size may be necessary 

to confirm the results in future. 

TABLE 4. The RR value of the two groups' differences 

 High difference Low difference 

Test group 0.6 (6/10) 0.4 (4/10) 

Control group 0.2857 (4/14) 0.71 (10/14) 

RR (95% CI) 2.10 (0.7953-5.5442) 

To verify the fuzzy reasoning method for mobile phase 

selection, 10 mobile phases were prepared with methanol 

and isopropanol using the 8:2 ratio. These were tested on 

five samples from the same batch, with peak times recorded. 

The mean peak time across the 10 mobile phases is 1.749±
0.119 min, with a coefficient of variation (CV) of 6.8%. 

The deviation between the average peak time and the 

model-predicted time is 0.63%, indicating a minor 

difference from the predicted time by the fuzzy system, thus 

confirming the effectiveness of some content.             

4. Discussions 

The primary aim of this study is to leverage the 

capability of fuzzy in handling uncertainty or incomplete 

data by applying it to specific processes in the LC-MS/MS 

measuring of 25(OH)D) and CoQ10 [12]. This method aims 

to optimize detection conditions and enhance the precision 

and reliability of the testing method, thereby providing 

valuable insights and evidence. The results show that the 

differences in 25(OH)D detection between LC-MS/MS and 

CLIA may be more pronounced in women aged 30-40 years. 

Analysis of input data features using the fuzzy system 

reveals that the age membership function (Input4) shows 

significant overlap between cluster 3 and clusters 1 and 2, 

indicating the notable contribution of the 30-40 age group 

to the observed differences. For the gender membership 

function (Input3), all clusters trend toward 1 (male = 0, 

female = 1), highlighting a more substantial influence of 

female gender on the differences. However, this study has 

certain limitations. The sample used is predominantly 

female (104 females, 38 males), primarily because the 

dataset obtained is a retrospective study based on health 

checkup participants. In China, women may prioritize 

health checkups more than men [13], which could be a 

significant factor contributing to sample bias. However, the 

male sample size is still more than the minimum statistical 

threshold (20 cases) for biomedical studies. Furthermore, an 

important strength of fuzzy logic lies in its ability to 

perform analysis despite limitations in data. The validation 

results partially show the accuracy of the predictions. 

Another advantage is the use of human understandable 

rules which provide strong reasoning and justifications for 

the outcomes, 

In the selection of mobile phases, the fuzzy system 

demonstrated its accuracy, as evidenced by the verification 

results showing a mere 0.63% deviation between the 

average peak time and the predicted time. The effective 

application of fuzzy reasoning in the LC-MS/MS detection 

of CoQ10 significantly reduces experimental time and 

resource consumption, thereby improving research 

efficiency. 

This study provides some initial outcomes to 

demonstrate the potential of using fuzzy logic in the 

application of LC-MS/MS detection. By using fuzzy logic 

in the testing of two representative lipid-soluble substances 

(25(OH)D and CoQ10), research efficiency has been 

enhanced, largely avoiding unnecessary experiments and 

massive data collection. The accuracy and capability to 

handle incomplete experimental data underscore the 

promise of fuzzy logic in biomedical applications [14]. 

Indeed, numerous studies have shown that fuzzy logic holds 

significant potential in areas such as laboratory 

medicine-related epidemiology, disease prediction, and 

optimization of experimental techniques [14-16]. Given that 

collecting comprehensive and high-quality datasets is often 

challenging for most research institutions, fuzzy can help to 

minimise this issue [17]. However, fuzzy logic is not 

without limitations [3，18]. Nonetheless, it can streamline or 

eliminate numerous steps in biomedical research [19], 

substantially enhancing research efficiency. 

This study, while enhancing the liquid LC-MS/MS 

testing of CoQ10 and25(OH)D, also provided valuable 

insights for applying fuzzy logic to the LC-MS/MS 

detection of other lipid-soluble substances and beyond. It 

provides some support for improving the precision and 

reliability of LC-MS/MS techniques.  

5.  Conclusions 

This study focuses on two lipid-soluble substances, 

CoQ10 and 25(OH)D, by applying fuzzy logic to their 

detection via LC-MS/MS. The validation results provided 

initial confirmation of the accuracy of fuzzy reasoning 

predictions. By using fuzzy logic in the LC-MS/MS 

detection of these two lipid-soluble substances, the study 



 

 

can improve the test effectiveness and provide valuable 

reference for the application of LC-MS/MS to other 

substances. Further research in optimizing the use of fuzzy 

in this area could improve the accuracy and workflow of 

such detection. 
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