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Abstract—The increasing use of unmanned aerial vehicles
(UAVs) in areas like surveillance, environmental monitoring, and
disaster response underscores the urgent need for high-quality
imaging. Unfortunately, the limitations of onboard sensors often
lead to poor-quality, low-resolution aerial images, which can
compromise how accurately we interpret scenes. This paper
introduces an improved image super-resolution method that
utilizes the Real-ESRGAN architecture, specifically tailored to
enhance vertical UAV imagery for better visual clarity. By
employing Residual-in-Residual Dense Blocks (RRDB) along with
a relativistic discriminator, the model successfully reconstructs
high-frequency textures and minimizes noise artifacts in aerial
images. We created a custom dataset featuring synthetic degra-
dations to mimic real-world UAV conditions. The model was
tested using Peak Signal-to-Noise Ratio (PSNR), Root Mean
Square Error (RMSE), and Perceptual Index (PI) across 15
test images, demonstrating notable improvements compared to
baseline ESRGAN versions. This research not only advances the
field of aerial image enhancement but also showcases a practical
approach for integrating deep learning-based super-resolution
into real-time UAV applications.

Index Terms—Image Super-Resolution, UAV Imaging, Real-
ESRGAN, Deep Learning, Remote Sensing, PSNR, Perceptual
Quality, Generative Adversarial Networks

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
undergone rapid advancements, fundamentally transforming
data acquisition across diverse domains such as environmen-
tal monitoring, urban planning, disaster management, and
precision agriculture. These aerial platforms offer a cost-
effective and versatile solution for capturing high-resolution
imagery over expansive and often inaccessible regions. How-
ever, the full potential of UAV-based imaging is frequently
constrained by limitations in onboard hardware, transmission
bandwidth, atmospheric interference, and motion-induced blur.
These factors often result in low-resolution or degraded aerial
imagery, thereby hindering the accuracy of subsequent tasks
such as object detection, semantic segmentation, and land-
cover classification—tasks that depend heavily on fine-grained
visual details.

To address these challenges, traditional image enhancement
and super-resolution techniques, such as bicubic interpola-
tion and kernel-based filters, have been in use for quite a
while. While these methods are computationally efficient,
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they often produce images that appear overly smooth and
lack the high-frequency details essential for capturing clear
structures. With the rise of deep learning, Convolutional
Neural Networks (CNNs) have made impressive strides in
image super-resolution by learning the connections between
low- and high-resolution image pairs. Still, even with these
advancements, CNN-based methods can struggle to recover
intricate textures and realistic patterns, particularly in complex
aerial environments.

Generative Adversarial Networks, or GANs, have truly revo-
lutionized the field by creating a competitive dynamic between
a generator and a discriminator, leading to the production of
incredibly realistic images. Building on this foundation, the
Super-Resolution GAN (SRGAN) took things up a notch by
adding content loss and perceptual loss into the mix. This
enhancement allows the model to produce outputs that are not
only detailed but also visually captivating. However, SRGANs
do encounter some challenges, such as stability issues, difficul-
ties in minimizing artifacts, and struggles with adapting to real-
world scenarios—especially in outdoor environments where
lighting, shadows, and motion blur can vary significantly.

To address these obstacles, the Enhanced Super-Resolution
GAN (ESRGAN) was developed. ESRGAN introduces
Residual-in-Residual Dense Blocks (RRDBs), which create
a more complex network architecture that enhances gradient
flow and feature reuse. Additionally, it employs a relativistic
discriminator that improves the network’s ability to distinguish
between synthetic and real textures, resulting in more realistic
reconstructions. ESRGAN is particularly impressive for en-
hancing aerial images, as it helps restore vital structures and
textures that are crucial in UAV imagery.

Despite the progress we’ve made, many super-resolution
models still rely on artificially degraded inputs, like bicubic
downscaling, instead of tackling the real-world image corrup-
tions we often see in UAV systems. These issues can include
noise from camera sensors, artifacts from image compression,
and uneven lighting caused by the UAV’s movement or alti-
tude changes. The Real-ESRGAN model steps in to fill this
gap by implementing stronger training methods and adapting
better to real-world distortions. It brings together enhanced
perceptual loss functions, techniques for stable GAN training,
and smart architectural adjustments to create high-resolution



images from naturally degraded inputs.

This research zeroes in on using Real-ESRGAN for UAV
images captured vertically, which are frequently utilized in
mapping, surveying, and geographical modeling. The main
goal is to boost the quality of these images without the need
for costly hardware upgrades or complicated onboard systems.
Our process involves compressing high-resolution UAV im-
ages through downscaling and degradation simulations, then
restoring them with Real-ESRGAN to achieve outputs that are
either close to the original or even better. This approach not
only conserves bandwidth and storage but also improves the
interpretability for real-world applications.

To assess the model’s performance, we use standard metrics
like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS). Our experiments show that Real-ESRGAN
significantly outshines traditional CNN-based and interpola-
tion methods in both quantitative and perceptual quality. The
model excels at reconstructing roads, rooftops, vegetation
textures, and structural boundaries, all of which are vital for
making critical decisions in various missions.

This paper introduces a practical and scalable approach
to UAV image super-resolution through Real-ESRGAN. It
emphasizes how this method can enhance remote sensing
workflows, cut down on flight repetitions, and boost the
efficiency of aerial monitoring tasks. Looking ahead, future
work could involve deploying lighter versions of the model
on UAV edge devices, integrating it with object detection
systems, and investigating transformer-based architectures for
even more improvements.

II. LITERATURE REVIEW

Unmanned Aerial Vehicles (UAVs) have become indispens-
able in many areas, including agriculture, surveillance, disaster
response, and environmental monitoring. They’re fantastic
at collecting aerial data, which has significantly improved
our understanding of situations and our planning capabili-
ties. However, the images they capture can sometimes suf-
fer from quality issues due to bandwidth constraints, the
limitations of onboard equipment, and tough environmental
conditions. To address this challenge, super-resolution (SR)
techniques—especially those leveraging deep learning—have
shown remarkable promise in enhancing the quality of images
captured by UAVs.

A. Super-Resolution Using GAN-Based Architectures

Generative Adversarial Networks, or GANs, have really
taken off in the realm of single-image super-resolution (SISR)
because they excel at creating high-frequency details while
keeping the overall quality looking great. A key milestone in
this area is the Super-Resolution GAN (SRGAN) developed
by Ledig and his team [1]. They came up with the innovative
idea of combining perceptual loss with adversarial training to
recreate photorealistic textures in enlarged images. However,
SRGAN did face some challenges, like training instability

and the occasional appearance of unwanted artifacts in certain
degradation situations.

To tackle these issues, Wang and colleagues rolled out
the Enhanced Super-Resolution GAN (ESRGAN) [2]. They
swapped out the traditional residual blocks for Residual-in-
Residual Dense Blocks (RRDB), which really boosted fea-
ture learning and gradient flow. ESRGAN also brought in a
relativistic discriminator to ramp up the visual realism and
sharpness. This upgrade made a huge difference, allowing
the network to recover intricate details, which is perfect for
enhancing images captured by UAVs.

B. Application of ESRGAN to UAV Imagery

Given the intricate structure and rich meanings found in
aerial scenes, ESRGAN and its various versions have been
used to bring out spatial details in images captured by drones.
Real-ESRGAN, which is an upgraded version of ESRGAN,
was specifically trained on datasets that reflect real-world
issues like compression artifacts, blurriness, and sensor noise.
It features enhanced perceptual loss functions and noise-aware
training methods, making it a strong choice for practical drone
applications.

Additionally, there have been proposals to combine ES-
RGAN with object detection models, like the Single Shot
Multibox Detector (SSD), to boost performance in subsequent
tasks. The super-resolved images provide clearer object bound-
aries, which helps improve detection accuracy, especially in
challenging aerial environments.

C. Transformer-Based Models for UAV Super-Resolution

Lately, transformer-based architectures have really taken off
in the world of computer vision, thanks to their impressive
ability to model long-range dependencies. The Swin Trans-
former, which was originally designed for image restoration
tasks, has now been tweaked for UAV image super-resolution
[5]. These models not only perform competitively against
their convolutional counterparts but also offer enhanced global
context modeling—something that’s super important for high-
altitude, wide-area aerial imagery.

D. Benchmark and Domain-Specific Datasets

To evaluate SR models, benchmark datasets such as DIV2K,
Set5, and Urban100 have been commonly utilized [6]. How-
ever, UAV-specific datasets provide more realistic degrada-
tion patterns and scene complexity. UAVid [7] includes se-
mantic segmentation annotations for high-resolution urban
aerial images, while Songdo Vision [8] provides annotated
RGB images from a bird’s-eye view, specifically designed
for vehicle detection. The SPAGRI-AI dataset [9] focuses
on aerial imaging in agriculture, facilitating domain-specific
super-resolution research.

E. Evaluation Metrics and Limitations

Standard evaluation metrics for image super-resolution in-
clude Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index Measure (SSIM). While PSNR provides a measure



of pixel-level accuracy, SSIM offers insights into structural
fidelity. However, both metrics have limited correlation with
human perceptual quality. Hence, Learned Perceptual Image
Patch Similarity (LPIPS) [10] is increasingly adopted to assess
perceptual closeness based on deep features. Yet, there remains
a lack of universally accepted metrics that capture both per-
ceptual and quantitative accuracy in aerial image restoration.

F. Key Challenges and Future Trends

Enhancing aerial images with deep learning is still a bit
of a tough nut to crack. Challenges like noise, compression
artifacts, and tricky terrains can really throw a wrench in the
performance of super-resolution (SR) models. Plus, when it
comes to using these deep SR models on drones in real-time,
the onboard computing power can be a real bottleneck. To
tackle these hurdles, researchers are looking into model opti-
mization techniques like pruning, quantization, and knowledge
distillation.

I[II. METHODOLOGY

This section presents the technical framework adopted
for enhancing vertically captured UAV images using Real-
ESRGAN. The complete methodology is structured into multi-
ple stages, covering data preprocessing, synthetic degradation
simulation, model architecture, training strategy, and evalua-
tion. The objective is to upscale low-resolution UAV images
with high fidelity while preserving semantic and structural
detail.

A. Overview of the Super-Resolution Framework

The proposed system follows a three-stage pipeline:

1) Data Preprocessing and Degradation Simulation:
High-resolution UAV images are synthetically degraded
using a blend of downsampling, noise, and compression
artifacts to simulate real-world transmission losses.

2) Real-ESRGAN Super-Resolution: The degraded im-
ages are passed through the Real-ESRGAN model,
which uses an RRDB-based generator to reconstruct
high-resolution outputs.

3) Post-processing and Evaluation: Output images are
evaluated using PSNR, SSIM, and LPIPS metrics to
quantify both structural accuracy and perceptual quality.

A schematic representation of this pipeline is shown in
Fig. 1.
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Fig. 1. Proposed Real-ESRGAN-based UAV image enhancement pipeline.

B. Dataset Preparation and Degradation Modeling

To simulate practical UAV scenarios, publicly available
high-resolution aerial datasets were curated. These images,
originally in 512x512 resolution, were preprocessed and syn-
thetically degraded to create paired datasets for supervised
training.

Degradation Simulation Steps:

e Bicubic Downsampling: HR images are resized to

128x 128 using bicubic interpolation.

o Gaussian Noise Addition: Noise with variance o € [5, 15]

is introduced to emulate sensor distortion.

e JPEG Compression: Images are saved with 10-40%

quality to simulate compression artifacts.

e Motion Blur: A 7x7 directional blur kernel is applied to

simulate UAV motion.

This results in paired samples of the form (I.r, Ing), used
for training the network.

C. Real-ESRGAN Architecture

The core model used is Real-ESRGAN, designed to handle
complex and unknown degradation patterns in real-world
imagery.

Input Image "HT = - = ~e0e > = » T ﬂ** Output Image

.

Fig. 2. Real-ESRGAN architecture highlighting the flow from input to output
image, with RRDB block structure detailed.

1) Generator Network (RRDBNet): The generator network
is based on Residual-in-Residual Dense Blocks (RRDB), al-
lowing for deep feature extraction without Batch Normaliza-
tion layers.

Given an input I1 R, the generator Gy with parameters 6
produces the output super-resolved image Igr as:

Isr = Gy(ILR) (1)

Each RRDB consists of three dense residual blocks that pro-
mote multi-scale feature reuse and stable gradient propagation.
2) Discriminator Network: The model employs a Relativis-
tic Average Discriminator (RaD), which estimates the realness
of the image relative to other images rather than in isolation:

DRa(-Treala -Tfake) = U(C(zreal) - ]Emfake [C(Ifake)]) 2)

Here, C(-) is the unnormalized discriminator output, and o
is the sigmoid function.



D. Loss Functions

A composite loss function is optimized to balance structural
fidelity and perceptual quality:

Pixel-wise L1 Loss:

Lpizer = [ Isr — Iur|h 3)
Perceptual Loss (VGG-19 based):
Lyercep = l65(Isr) — ¢5(Lur)ll3 4)
Adversarial Loss (RaGAN):
Laay = —10g(Dra(Isr; Iur)) ®)

The total loss is given by:
Ltotal = Alﬁpizel + >\2£percep + )\BEadv (6)
where \; = 1.0, Ay = 0.1, and A3 = 0.005.

E. Training Configuration

The training was conducted using Google Colab with an
NVIDIA Tesla T4 GPU. The key hyperparameters are listed
below:

o Batch Size: 16

« Learning Rate: 2 x 10~* (with cosine decay)
o Optimizer: Adam (51 = 0.9, 82 = 0.99)

o Epochs: 300

Data augmentations included rotation, flipping, brightness
jitter, and random noise injection to increase dataset diversity.

FE. Evaluation Protocol

Three key metrics were employed for performance evalua-
tion:
« PSNR: Evaluates pixel-level fidelity.
o SSIM: Measures structural similarity.
o LPIPS: Compares perceptual similarity using deep fea-
tures.

G. Reproducibility
To ensure reproducibility:

o All random seeds were fixed in both PyTorch and NumPy.

e Version control was maintained for model checkpoints
and training logs.

o Scripts were modularized for preprocessing, training, and
evaluation.

H. Algorithm: Inference Pipeline

The following pseudocode outlines the Real-ESRGAN in-
ference workflow:
(ht]
Pipeline
Input: Low-resolution image I, r Load pre-trained Real-
ESRGAN model weights Normalize and resize Iy as
preprocessing Pass I, i to generator: Isgp = G(ILr) Clip
and denormalize output /gp to obtain final image Qutput:
Super-resolved image Ispr

Real-ESRGAN Inference

IV. EXPERIMENTS AND RESULTS

This section outlines the experimental setup, evaluation
metrics, comparative analysis, and visualization of the results
achieved by the Real-ESRGAN-based UAV image enhance-
ment pipeline.

A. Dataset and Preprocessing

To simulate realistic UAV degradations, we curated a dataset
of high-resolution aerial images. All images were normalized
to 512 x 512 resolution. Degradations applied to generate low-
resolution (LR) images included:

o Bicubic downsampling to 128 x 128

« Gaussian noise with variance o € [5, 15]

o JPEG compression (quality: 10—40)

o Random motion blur with 7 x 7 kernels

These degraded LR images were then upsampled and passed
through Real-ESRGAN for super-resolution reconstruction.

Dataset Composition:

e Train Set: 800 image pairs (LR-HR)

« Validation Set: 100 images

o Test Set: 100 images from diverse domains
o Format: All samples stored as PNG

B. Evaluation Metrics

We evaluated performance using both perceptual and pixel-
wise metrics:

« PSNR (Peak Signal-to-Noise Ratio): Higher values
indicate better reconstruction.

e SSIM (Structural Similarity Index): Measures per-
ceived similarity in luminance, contrast, and structure.

« RMSE (Root Mean Square Error): Lower values imply
better pixel-level accuracy.

o Perceptual Index (PI): Combines NIQE and Ma scores;
lower PI denotes better visual quality.

C. Comparative Performance

TABLE I
QUANTITATIVE COMPARISON OF SUPER-RESOLUTION MODELS
Model PSNR1T | SSIM1 | RMSE | | PI |
Bicubic 22.16 0.718 16.48 6.01
ESRGAN 27.81 0.854 10.23 3.95
Real-ESRGAN 30.52 0.911 7.62 2.89
x2plus 29.84 0.902 8.14 3.12
anime6B 28.40 0.872 9.31 3.34

As seen in Table I, Real-ESRGAN outperforms all variants
and baselines across all metrics, achieving an average PSNR
of 30.52 dB and SSIM of 0.911.

D. Visualization Results

V. ARCHITECTURAL INSIGHTS INTO REAL-ESRGAN

While the previous section described the Real-ESRGAN
pipeline at a high level, this section delves deeper into the
architecture’s individual modules and their contribution to
performance and stability in UAV image enhancement.
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Fig. 3. Visual comparison of UAV image super-resolution. Left: Input LR
image. Right: Output from Real-ESRGAN.

A. RRDB Generator Design

The generator in Real-ESRGAN is composed of a series
of Residual-in-Residual Dense Blocks (RRDB), which are
themselves made up of multiple Dense Residual Blocks.
Unlike traditional convolutional models, RRDBs eliminate
Batch Normalization layers to improve stability and avoid
training artifacts. The architecture allows residual connections
at multiple levels:

o Local residual connections within each dense block for
fine-grained feature reuse.

o Intermediate residual connections across blocks to
preserve gradient flow.

« Global residual path from input to output.

B. Relativistic Average Discriminator

Instead of judging each image in isolation, the relativistic
discriminator assesses whether a real image looks more real-
istic than a fake one. This shift in perspective helps reduce
artifacts and leads to more stable GAN training, especially for
outdoor aerial scenes.

C. Loss Function Interplay

Real-ESRGAN leverages a combination of pixel-level L1
loss, VGG-based perceptual loss, and adversarial loss. Their
balanced weights ensure that outputs are not only numerically
accurate but also visually pleasing. We found that tuning these
weights was essential to avoid over-sharpening or unnatural
textures.

D. Efficiency and Model Footprint

Despite its complex architecture, Real-ESRGAN maintains
a relatively efficient runtime. The omission of BatchNorm and
the use of lightweight convolutional layers contribute to its
suitability for near real-time enhancement on ground stations
or edge devices.

VI. PERFORMANCE INSIGHTS AND PRACTICAL
CONSIDERATIONS

The experimental results really showcase the strengths of
our Real-ESRGAN-based method for enhancing UAV imagery
captured from above. In most of the test cases, the model

demonstrated a remarkable boost in visual clarity and struc-
tural integrity when compared to both traditional upscaling
techniques and the original ESRGAN.

One standout observation is how effectively the model deals
with various types of degradation, like motion blur, noise,
and compression artifacts—issues that often plague aerial
imaging. Real- ESRGAN managed to recover intricate details
such as roads, rooftops, and tree patterns, which are typically
lost with conventional methods. The restored images were
noticeably sharper, with well-preserved edges and minimal
artificial noise.

What really impressed us was the model’s knack for bal-
ancing realism and sharpness. While ESRGAN can sometimes
over-sharpen or introduce unwanted visual artifacts, Real-
ESRGAN maintained a more natural texture. This success can
be credited to the enhanced network architecture—particularly
the Residual-in-Residual Dense Blocks—and the thoughtfully
tuned mix of pixel, perceptual, and adversarial loss functions.

That said, the model isn’t without its flaws. In certain highly
repetitive patterns—Ilike tiled rooftops or crop fields—the
upscaling seemed a bit less consistent. This might stem from
limitations in the model’s receptive field or a lack of multi-
view contextual information. Additionally, images that were
heavily degraded or too small posed a challenge, leading to
less detailed outputs. These edge cases underscore the need for
further enhancements, especially in applications that require
extremely high precision.

Despite these challenges, the overall performance of Real-
ESRGAN was quite impressive. It held its own across a variety
of conditions, demonstrating strong generalization even when
trained on a relatively small UAV dataset. Plus, its efficiency
made it practical for real-world use, with inference times that
are quite reasonable.

VII. CONCLUSION

In this study, we tackled the ongoing challenge of improving
vertically captured UAV imagery, which often suffers from
issues like hardware limitations, atmospheric distortions, or
compression artifacts during transmission. UAVs have quickly
become essential across various fields—from disaster response
and agriculture to urban planning—but the limited resolution
of aerial images continues to hinder our ability to extract
detailed, meaningful information.

To address this, we introduced a deep learning-based en-
hancement pipeline using Real-ESRGAN, an upgraded version
of the ESRGAN architecture specifically crafted to deal with
realistic image degradations. This model utilizes Residual-in-
Residual Dense Blocks (RRDB), a relativistic discriminator,
and a mix of pixel-wise, perceptual, and adversarial losses to
restore fine details and textures in low-resolution UAV images.

Our approach was systematic: we began by creating a high-
quality dataset and applied synthetic degradation (downsam-
pling, noise, and blur) to mimic real-world UAV conditions.
Next, we trained and evaluated Real-ESRGAN on these de-
graded inputs. We used quantitative metrics like PSNR, SSIM,
RMSE, and LPIPS, along with qualitative comparisons, to



assess performance. The results consistently showed that Real-
ESRGAN surpassed traditional interpolation methods and ear-
lier GAN-based models, particularly in terms of visual realism
and structural clarity.

The importance of this work goes beyond just numerical
improvements; it also has practical applications. The pipeline
we developed can easily be integrated into ground station
workflows or adapted for cloud-based post-processing, making
it perfect for real-time or near real-time UAV operations.
Enhanced aerial images can lead to better decision-making in
critical situations—whether it’s for emergency relief mapping
or analyzing agricultural yields.

VIII. ETHICAL AND REGULATORY CONSIDERATIONS

As UAV technology continues to evolve and find applica-
tions across sectors like surveillance, agriculture, and disaster
response, it’s important to consider the ethical implications
of enhancing UAV imagery using deep learning models like
Real-ESRGAN.

A. Privacy and Surveillance Concerns

Super-resolution methods improve the clarity of images,
which is great for technical accuracy—but it also raises privacy
concerns. Clearer images may unintentionally capture personal
details, private property, or sensitive information, especially
in urban or populated areas. This brings up valid questions
around how and where UAVs should be allowed to operate,
and what kinds of data they should collect.

B. Possibility of Misuse

While our intention is to use Real-ESRGAN for positive
outcomes—Ilike improving disaster relief planning or sup-
porting environmental monitoring—there’s always the risk of
misuse. The same tools that help recover image details for
good could potentially be used for unauthorized surveillance
or intrusive monitoring. Being aware of this dual-use nature
is crucial.

C. Need for Clear Usage Protocols

To use this technology responsibly, there should be transpar-
ent policies in place. These might include flight logs, location
restrictions, or regulations about where enhanced images can
be captured and stored. It’s also important to make sure the
data isn’t accessed or shared without the proper permissions.

D. Data Protection and Anonymization

Wherever possible, steps should be taken to blur or
anonymize personal details in UAV imagery before enhance-
ment or sharing. This includes applying filters or masks
to sensitive areas, and enforcing strict access controls for
enhanced outputs, particularly in applications involving the
public.

E. Regulatory Compliance

Finally, all deployments of this technology should be in line
with local and international laws—especially those concerning
drone operation and data protection (like GDPR). Working
within these legal frameworks ensures not only safety and
privacy, but also builds trust around the use of such advanced
image enhancement techniques.

By acknowledging and addressing these concerns upfront,
we can help ensure that Real-ESRGAN is used in a way that
benefits society—without compromising ethical standards.
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