
MEMBERSHIP INFERENCE ATTACKS ON HYPERDIMENSIONAL
COMPUTING: A COMPREHENSIVE ARCHITECTURAL ANALYSIS

RUPESH RAJ KARN, JOHANN KNECHTEL, OZGUR SINANOGLU
Center for Cyber Security, New York University, Abu Dhabi, UAE

E-MAIL: {rupesh.k, johann, ozgursin}@nyu.edu

Abstract:
Membership Inference Attacks (MIAs) pose a significant

threat to the privacy of machine learning (ML) models by
allowing adversaries to determine whether a specific data
sample was part of a model’s training dataset. While extensive
literature has explored MIAs in traditional ML models such
as neural networks and decision trees, little attention has
been given to their applicability in the emerging paradigm of
Hyperdimensional Computing (HDC). This work pioneers the
systematic exploration of MIAs in HDC models, which are
increasingly being deployed in domains ranging from image
classification to hardware security. We evaluate the suscepti-
bility of HDC to MIAs using two diverse datasets: the MNIST
image dataset and digital circuit netlists from ISCAS85 and
EPFL combinational benchmarks. We leverage multiple
similarity-based metrics—Cosine, Euclidean, and Hamming
distance—to distinguish training members from non-members.
Our results demonstrate that the direct aggregation and
transparent structure of HDC models make them more
vulnerable to MIA compared to traditional ML models, which
often abstract and obscure individual training contributions.
Keywords:

Hyperdimensional Computing, Membership Inference At-
tacks, Privacy, High-Dimensional Vectors, Model Vulnerability

1 Introduction
Machine learning (ML) models are increasingly being

scrutinized for their ability to inadvertently leak informa-
tion about their training data [?]. Among these privacy
risks, Membership Inference Attacks (MIAs) [?, ?] have
emerged as a potent vector, allowing adversaries to infer
whether a particular data point was used during a model’s
training phase. This concern is particularly amplified in
sensitive domains such as healthcare, security, and finance,
where training membership itself may carry confidential
information.

While MIAs have been well-studied in traditional ML
paradigms such as neural networks (NNs) and decision
trees (DTs) [?], these attacks rely on the presence of over-
fitting, confidence score anomalies, or complex behavior
in model outputs [?]. Such methods assume a parametric
model with hidden, non-linear decision boundaries, and of-
ten require access to probability scores or softmax vectors
to be effective. However, these assumptions do not hold in
the emerging class of models based on Hyperdimensional
Computing (HDC) [?, ?].

HDC models operate on high-dimensional binary or
bipolar hypervectors and rely on simple arithmetic and
logical operations for both training and inference [?, ?].
Class representations in HDC are formed through addi-
tive accumulation of encoded data samples, making them
inherently transparent and memory-based [?]. As HDC
finds increasing use in diverse domains—from image classi-
fication tasks like MNIST to security-critical applications
involving ISCAS85 and EPFL digital circuit netlists—it
becomes imperative to investigate whether MIAs can com-
promise their privacy guarantees.

Here, we present the first comprehensive exploration of
MIAs on HDC models. We introduce a set of tailored
methodologies for executing MIAs against HDC systems,
taking into account their unique vector-based architecture
and similarity-driven inference mechanism. Unlike tradi-
tional models, HDC exposes explicit data influence in its
memory model [?], raising critical questions about the pri-
vacy resilience of such systems.

The main contributions of this work are as follows:
1. We present the first dedicated study of MIAs on HDC

models, highlighting their vulnerability due to explicit
training sample representation.

2. We conduct extensive experiments on two domains:
the MNIST image classification dataset and the
ISCAS85 and EPFL combinational circuit netlist
datasets, demonstrating the generalization of our find-



ings.
3. We compare the effectiveness of MIAs against HDC

models with traditional models like NNs and DTs,
showcasing the heightened risk in HDC due to its de-
terministic and memory-based structure.

Source code to reproduce results is available at https:
//github.com/rkarn/Membership_Inference_Attack .
2 Preliminaries

This section covers core concepts, beginning with moti-
vation, followed by the HDC model’s mathematical foun-
dations and MIA fundamentals, establishing the basis for
our methodology.
2.1 Motivation

Machine learning models are increasingly deployed in
privacy-sensitive domains including healthcare diagnos-
tics, financial fraud detection, and personalized services,
exposing critical vulnerabilities to MIAs [?]. Unlike tradi-
tional cyberattacks, MIAs determine whether specific data
was used to train a model, with serious consequences. In
healthcare, inferring a patient’s data was used in train-
ing could reveal their medical conditions. For financial
datasets, MIAs may expose sensitive transaction patterns.
These attacks can violate data protection laws like GDPR
[?] and HIPAA [?], and often enable more sophisticated
attacks like data poisoning and model inversion.

While existing research has extensively studied MIAs
on NNs, support vector machine (SVMs), and random
forests (RFs), the vulnerability of HDC models remains
unexplored. This gap is particularly concerning as HDC’s
training explicitly accumulates samples in class hypervec-
tors, potentially making membership information more ac-
cessible than in NN representations. Additionally, the
paradigm’s growing adoption in edge devices and IoT
applications—where models are often deployed with mini-
mal protection—raises urgent privacy concerns [?, ?]. Fur-
ther, HDC’s binary/bipolar vector space may enable novel
attack vectors differing from conventional ML models.

Our work addresses this oversight through the first sys-
tematic investigation of MIAs against HDC systems, pro-
viding insights for both attackers and defenders. Also see
our release for detailed comparison with prior arts.
2.2 HDC Model

Hyperdimensional computing is a biologically inspired
computational paradigm in which data is represented
using high-dimensional vectors, known as hypervectors.
These are typically bipolar vectors in {−1,+1}D, where
D ≫ 1 (e.g. D = 10,000).

Memory and Encoding: Each input feature fi and its
quantized value vi are mapped to hypervectors via an
Item Memory (IM) and Value Memory (VM), respectively.
Given a sample x = [x1, x2, . . . , xn], the encoded hyper-
vector hx ∈ {−1,+1}D is constructed using binding and
bundling operations:

hx =

n∑
i=1

ρi (hfi) ◦ hvi , (1)

where hfi = IM(fi) is the hypervector for the i-th fea-
ture, hvi = VM(vi) is the hypervector for the quantized
feature value, ◦ denotes element-wise multiplication (bind-
ing), and ρi(·) is a fixed permutation that encodes feature
position.

Training via Hypervector Aggregation: The class hy-
pervector Hc for class c is formed by aggregating encoded
hypervectors from all samples xj ∈ Dc belonging to class
c:

Hc =
∑

xj∈Dc

Encode(xj). (2)

Inference via Similarity: For inference, an input sample
xq is encoded into hq = Encode(xq), and classification is
based on similarity between hq and each class hypervector:

ĉ = argmax
c

(sim(hq,Hc)) , (3)

where sim(·, ·) denotes cosine similarity:

sim(a,b) =
a · b
∥a∥∥b∥

(4)

2.3 MIA
An MIA aims to infer whether a specific data point xq

was included in the training dataset of a target model.
MIAs exploit patterns, overfitting behavior, or output dis-
tributions to infer membership, thus compromising data
privacy. Formally, an adversary seeks to determine the
binary membership indicator:

M(xq) =

{
1, if xq ∈ Dtrain,

0, otherwise.
(5)

Given a query sample xq, the attacker encodes it to
obtain hq, and computes its similarity to the class hyper-
vector Hc. If the similarity exceeds a chosen threshold τ ,
the adversary infers that xq was used during training:

sim(hq,Hc) > τ ⇒ xq ∈ Dc. (6)



This inference is justified by the additive nature of class
hypervector Hc (Equation 2): training samples contribute
directly to the hypervector, making their encoded repre-
sentations more similar than those of non-members.

3 MIA to HDC
The HDC models warrant a fresh look with respect to

MIA. The architectural properties of HDC models intro-
duce unique attack surfaces for MIAs. These vulnerabili-
ties stem from three fundamental characteristics:
3.1 Additive Training Mechanism

Supervised HDC models construct class representations
through direct aggregation of encoded samples (Equa-
tion 2). This operation preserves exact geometric rela-
tionships between samples and class centroids, maintains
linear separability of contributions (unlike non-linear NN
transformations), and permits sample influence to be prov-
ably bounded via vector algebra.
3.2 Transparent Data Representation

Traditional ML models abstract training data through
non-linear activation functions in NNs, ensemble methods
in RFs, and kernel transformations in SVMs. In contrast,
HDC’s memory-based paradigm retains direct traceability
of training samples. Each xi’s hypervector contributes
equally to Hc modulo the encoding function’s properties.
3.3 Distance-Based Inference

HDC’s inference relies on similarity metrics (Equa-
tion 4), which enables adversaries to compute exact mem-
bership scores using the same metrics as legitimate infer-
ence, to establish threshold-based detectors (Equation 6)
without requiring probability calibration, and to bypass
the need for auxiliary shadow models (unlike with MIAs
on NNs [?]).

The comparison is summarized in Table 1. This quali-
tative analysis suggests that HDC models are intrinsically
more vulnerable to MIA due to their deterministic prop-
erties that preserve distance. The absence of non-linear
transformations or stochastic regularization mechanisms
makes membership signals fundamentally harder to ob-
scure compared to traditional ML approaches. In later
sections of this work, we present experimental evidence to
illustrate this aspect.

4 Different Architectures of HDC
Although standard HDC models (explained in Sec-

tion 2.2) offer a robust and interpretable mechanism
for learning, their performance can be limited in high-
variability or high-dimensional datasets. To address this,

several modifications have been applied to the HDC archi-
tecture and configurations that not only improve accuracy
but also impact the susceptibility and evaluation strategy
for MIAs. Some of those architectures and configurations
are as follows.
4.1 Iterative Retraining and Regenerative Training

In standard HDC, the class hypervector Hc is formed
as an unweighted sum of encoded training samples as in
Equation 2. However, this initial model may misclassify
samples near decision boundaries. To correct this, an itera-
tive retraining mechanism [?] is employed where misclassi-
fied samples are identified post-inference and reintroduced
with higher weights:

H(t+1)
c = H(t)

c + λ
∑

xk∈M(t)
c

Encode(xk), (7)

where M(t)
c ⊂ D is the set of misclassified samples at

iteration t predicted as class c, and λ > 1 is a learning
rate or weight amplification factor.

This regenerative step enhances the representational ca-
pacity of class vectors for difficult regions in the input
space, thereby improving classification accuracy [?].
4.2 Adaptive Encoding

Traditional HDC encodes features using randomly gen-
erated hypervectors, which may not fully exploit the un-
derlying data structure. We use an adaptive encoding [?]
mechanism that leverages Principal Component Analysis
(PCA) or other linear transformations to emphasize the
most informative features:

zj = W⊤
PCAxj , (8)

where xj ∈ Rn is the original input vector, and WPCA ∈
Rn×k is the matrix of top k eigenvectors from PCA. The
transformed vector zj is quantized and encoded via stan-
dard HDC.

This dimensionality reduction improves signal-to-noise
ratio and increases class separability in the hypervector
space [?].
4.3 Hybrid HDC Models

To enhance feature representation, a hybrid architecture
is used that integrates a lightweight NN fθ to extract non-
linear features [?], which are then encoded using the HDC
framework:

hj = Encode(fθ(xj)), (9)
where fθ : Rn → Rk is a neural feature extractor param-
eterized by θ. This model benefits from the expressive



TABLE 1. Comparison of MIA risks in HDC vs. traditional ML models.
Feature Traditional ML Models HDC Models
Abstraction of training
data

High (deep architectures abstract individual
samples)

Low (individual samples directly contribute to class rep-
resentation)

Sensitivity to each sam-
ple

Typically low unless overfitted High due to explicit accumulation of encoded vectors

Training data persistence Implicit (via weights or rules) Explicit (summed in class hypervectors)
Predictive mechanism Parametric (e.g., learned weights or splits) Similarity-based (cosine or Hamming to class vectors)
Complexity of inference
logic

High (nonlinear functions, layers) Low (vector similarity)

Ease of reverse engineer-
ing

Low (complex internal structure) Moderate to High (transparent vector encoding)

capacity of NNs for complex data and the symbolic inter-
pretability and efficiency of HDC in the decision layer.

These enhancements notably improve classification per-
formance while also impacting the vector space topology
by either increasing the distinctiveness of members (exac-
erbating MIA) or adding robustness that generalizes bet-
ter, thereby reducing overfitting and lowering MIA risk.
Therefore, any MIA strategy must account for the trans-
formation and retraining dynamics introduced by these
mechanisms.
4.4 Higher-Order Representations

To capture complex feature interactions beyond linear
aggregation, a higher-order representations [?] is applied
with the HDC encoding. Instead of encoding features in-
dependently, subsets of features are grouped and bound
using element-wise operations such as multiplication (bind-
ing) or XOR:

hi,j = hfi ◦ hfj , hgroup =
∑

(i,j)∈P

hi,j , (10)

where P ⊆ {(i, j) : i < j} is the set of feature pairs con-
sidered. This group hypervector hgroup is then included in
the class hypervector accumulation:

Hc ← Hc + hgroup. (11)

This formulation allows the model to implicitly learn fea-
ture correlations and dependencies, which is especially use-
ful in datasets with structured or hierarchical relationships
[?].
4.5 Dimensionality Optimization

The dimensionality D of the hypervectors plays a cru-
cial role in determining the representational capacity of
the HDC model. A larger D provides more orthogonal
space for representing patterns but also incurs higher com-
putational and memory costs. We explore dimensionality
values from D = 10,000 up to D = 50,000, optimizing for

validation accuracy:

D∗ = argmax
D

Accuracy(HDCD(Dtrain,Dval)). (12)

Empirically, increasing D can reduce the overlap between
encoded hypervectors, thereby increasing classification
precision and robustness against adversarial noise.
4.6 Error-Correcting Codes

To enhance the robustness of class representations
against misclassification and noise, the error-correcting
codes (ECC) is applied [?] to class labels. Each class c ∈
{1, . . . , C} is mapped to a binary codeword yc ∈ {0, 1}K
using a pre-defined ECC scheme such as BCH or Hamming
codes. The HDC model is trained to predict the codeword
instead of the raw label:

ŷ = Decode(hx), (13)

where Decode(·) determines the most similar codeword us-
ing Hamming or cosine similarity. The final predicted
class is obtained via ECC decoding:

ĉ = ECC−1
(
argmin

c
dist(ŷ,yc)

)
. (14)

This approach introduces redundancy in the label space,
which enhances resistance to encoding and decoding noise.
4.7 MicroHD Optimization

MicroHD [?] is an optimization-driven framework tai-
lored to systematically tune the HDC pipeline for opti-
mal performance. It involves hyperparameter exploration
and dynamic adjustment of encoding strategies. Given
a search space Θ of hyperparameters such as dimension-
ality, quantization levels, and encoding rules, MicroHD
performs:

θ∗ = argmax
θ∈Θ

Accuracy(HDCθ(Dtrain,Dval)), (15)

where θ includes parameters such as the dimensionality D,
the feature grouping structure for higher-order encoding,



and the binding operation (e.g., XOR vs. element-wise
product).

By automating the design space exploration, MicroHD
identifies the optimal configuration that maximizes model
performance while balancing efficiency and robustness.

5 MIA Evaluation
5.1 Evaluation Metric

For each sample xi with label yi, we compute its en-
coded hypervector hi = Encode(xi), and evaluate the sim-
ilarity score si using one of the following metrics:

Cosine Similarity: s
(cos)
i =

hi ·Hyi

∥hi∥∥Hyi
∥

(16)

Euclidean Distance (negated): s
(euc)
i = −∥hi −Hyi

∥2 (17)
Hamming Distance (negated): s

(ham)
i = −dham(hi,Hyi

) (18)

The negation of Euclidean and Hamming distances
serves to maintain interpretational consistency with cosine
similarity.

A sample is inferred to be a member of the training
set if its score exceeds a threshold τ calibrated from the
training data (Equation 6). The membership inference
can be rated by:

– True Positive Rate (TPR): Fraction of training sam-
ples correctly inferred as members;

– True Negative Rate (TNR): Fraction of test samples
correctly inferred as non-members.

A High TPR indicates the model retains detectable
traces of training samples, while a low TNR suggests
overexposure of non-members. Together, they reveal the
model’s membership privacy gap—the disparity between
how it treats training versus unseen data. By analyzing
these rates across different metrics and HDC configura-
tions (Section 4), we assess the degree to which the model
retains information about its training data, revealing po-
tential privacy risks.
5.2 Threshold Selection for MIA

The threshold τ is calibrated using the average training
score (µtrain) for each metric, computed as the arithmetic
mean of all training samples’ similarity/distance scores:

τcosine = µcosine
train + 0.02, (19)

τeuclidean = µeuclidean
train , (20)

τhamming = µhamming
train . (21)

For cosine similarity, we add a small, empirically de-
rived margin to account for its saturated distribution

near 1. This thresholding strategy is designed to ex-
ploit the inherent separation between member and non-
member distributions—where training samples typically
exhibit higher cosine similarity scores or smaller distances
for Euclidean/Hamming distances—and to maintain ro-
bustness over score variations across HDC architectures
through metric-specific calibration.
5.3 Experimental Testbench

To comprehensively evaluate the susceptibility of HDC
models to MIAs, we design a testbench that includes di-
verse datasets, custom preprocessing pipelines, and stan-
dardized ML baselines. The experiments are implemented
in Python and executed in a high-performance computing
environment to ensure reproducibility and scalability.

We utilize two significantly different datasets to test the
generalization of our findings:

MNIST: A widely-used image classification dataset [?],
with 70,000 grayscale images of handwritten digits (0–9),
each of size 28× 28. The dataset is split into 60,000 train-
ing and 10,000 testing samples. It serves as representative
case for high-dimensional, unstructured, visual data.

ISCAS85 and EPFL Circuit Netlists: These are stan-
dard benchmarks in the field of digital hardware design
and verification [?, ?]. They contain combinational circuit
representations in the form of netlists, which describe logic
gates and their connections at the gate level.

For the ISCAS85 and EPFL datasets, we convert the
netlists into ML-compatible tabular datasets using a self-
developed netlist parser, which extracts structural features
such as gate type, fan-in/fan-out, logic level, and con-
nectivity patterns. This conversion pipeline is available
in our open-source code release. The parser performs
graph traversal to extract topological information (e.g.,
logic depth, gate fanout), applies one-hot encoding to gate
types, and derives structural features such as interconnect
count and signal direction. Unlike image or text datasets,
the ISCAS85 and EPFL datasets present a unique chal-
lenge due to their graph-based, non-i.i.d. (independent
and identically distributed) structural and categorical fea-
tures, requiring careful preprocessing to map them into
feature vectors suitable for HDC encoding. Those details
are also available in our release.

All experiments were conducted on a Red Hat Enter-
prise Linux 8.6 server equipped with 128-core AMD EPYC
7763 processors, 1 TB of physical RAM, and a Python
3.10 environment. This setup enabled efficient parallel
training and inference across multiple configurations and
metrics, especially useful for evaluating large-scale hyper-



vector models and running grid searches specifically for
MicroHD optimization (Section 4.7).

6 Experimental Results and Discussion
The HDC model for MNIST image and IS-

CAS85+EPFL circuit datasets has been trained as
per the HDC architecture given in Section 2.2. Infer-
ence evaluation metrics and MIA metrics are shown in
Table 2 marked as Baseline. We subsequently applied
all architectural variants and enhancements detailed in
Section 4, maintaining consistent feature representations
and labels across all models to enable direct comparison.
Membership inference analysis was performed uniformly
across both baseline HDC models and their enhanced
counterparts to quantify potential differences in privacy
vulnerability. The value of hyperparameters and settings
of experiments (corresponding to Section 4) is available
in our source-code release.
6.1 Aggregate Observations from Experimental Re-

sults
Our comprehensive evaluation across MNIST and digi-

tal circuit datasets reveals fundamental trends in HDC’s
accuracy-privacy relationship:

– Accuracy Gains: Architectural enhancements con-
sistently improve classification performance, with hybrid
HDC models achieving the highest gains (96.31% MNIST,
78.05% circuits). Iterative retraining demonstrates partic-
ularly strong results across both domains (92.07% MNIST,
75.13% circuits), confirming the value of error-corrective
learning in HDC.

– Privacy-Stability Trade-off: While accuracy improve-
ments are substantial, most enhancements maintain or
reduce membership leakage. Adaptive encoding and di-
mensionality optimization emerge as particularly balanced
approaches, delivering 88-89% MNIST and 73-78% cir-
cuit accuracy while keeping cosine TPR below 40-45%—
outperforming their baseline counterparts in both metrics.

– Generalization Benefits: Techniques that improve
model generalization (iterative retraining, MicroHD) con-
sistently show 5-15% lower MIA success rates compared
to baseline, supporting the hypothesis that robust learn-
ing inherently mitigates membership memorization (Sec-
tion 4). This effect holds across both image and circuit
domains despite their structural differences.

– Dataset-Specific Patterns: MNIST models exhibit bet-
ter privacy preservation (TPR mostly 36-46%), whereas
circuit models display higher baseline vulnerability (TPR
up to 73%), suggesting that the binary nature of circuit
netlists may inherently increase membership traceability.

– Metric Consistency: Across all architectures, Ham-
ming distance demonstrates the most stable TPR/TNR
balance (47-57% MNIST, 28-59% circuits), while co-
sine similarity provides the clearest separation between
high/low-risk models. Euclidean metrics show intermedi-
ate behavior, making them less reliable for comparative
assessments.
6.2 Implications for HDC Security

Our results challenge the conventional wisdom that im-
proved model utility necessarily compromises data privacy.
Three key security insights emerge:

– Accuracy-Privacy Synergy: Contrary to trends in
NNs, HDC demonstrates that accuracy improvements
(e.g., +15% in hybrid models) can coincide with re-
duced membership leakage (5-15% lower TPR). This sug-
gests HDC’s transparent memory model may inherently
resist the overfitting-privacy trade-off common in other
paradigms.

– Architectural Leverage Points: The success of itera-
tive retraining (36% TPR cosine) and adaptive encoding
(39% TPR) confirms that data-aware training strategies
can simultaneously enhance accuracy and obscure mem-
bership signals. This dual benefit stems from HDC’s lin-
ear learning dynamics, where error correction naturally
dilutes sample-specific traces.

– Domain-Dependent Vulnerabilities: The higher MIA
success on circuit netlists (up to 73% TPR) versus MNIST
(max 57% TPR) reveals that input data characteristics
critically influence privacy risks. Binary circuit represen-
tations appear more susceptible to membership tracing
than continuous image features, suggesting the need for
domain-specific protections.

These findings validate threshold-based similarity anal-
ysis as an effective leakage detection framework for HDC,
while highlighting that security guarantees must be evalu-
ated relative to both model architecture and data modal-
ity. Future secure HDC designs should prioritize regu-
larization via iterative learning over obfuscation, data-
adaptive encoding over rigid projection schemes, and
domain-tailored privacy budgets.
6.3 Comparison with Traditional ML Models

To contextualize the privacy characteristics of HDC
models, we compare their performance and vulnerability
to MIAs against a set of traditional ML models configured
as follows:

– Fully Connected NN: 1 hidden layer (64 units), ReLU
activation, and softmax output for MNIST images.



TABLE 2. HDC model accuracy and MIA metrics for MNIST and ISCAS85 + EPFL datasets using baseline HDC model (Section 2.2)
as well as different modified architectures given in Section 4.

MNIST
HDC Type Dimension Accuracy (%) Cosine Euclidean Hamming

Train Test TPR (%) TNR (%) TPR (%) TNR (%) TPR (%) TNR (%)
Baseline 10000 80.83 81.22 41 59 49 51 53 47
Iterative Retrain & Regener-
ation

40000 92.05 92.07 36 63 43 56 44 54

Adaptive Encoding 40000 88.21 88.62 39 60 48 56 43 55
Hybrid HDC 20000 97.39 96.31 46 52 54 45 57 42
Higher-Order Representa-
tion

40000 80.54 81.47 44 55 50 50 51 48

Dimensionality Optimiza-
tion

20000 88.11 88.83 39 60 44 55 46 53

Error-Correcting Codes 40000 88.22 88.62 39 60 45 54 46 53
MicroHD Optimization 40000 88.45 89.27 38 61 44 55 46 53

ISCAS85 + EPFL
HDC Type Dimension Accuracy (%) Cosine Euclidean Hamming

Train Test TPR(%) TNR (%) TPR (%) TNR (%) TPR (%) TNR (%)
Baseline 40000 70.96 70.57 53 47 44 56 57 43
Iterative Retrain & Regener-
ation

40000 75.65 75.13 50 50 42 59 55 45

Adaptive Encoding 40000 73.12 73.07 57 44 49 51 59 42
Hybrid HDC 40000 78.49 78.05 67 33 56 44 73 28
Higher-Order Representa-
tion

60000 76.35 72.84 45 54 48 51 49 50

Dimensionality Optimiza-
tion

80000 77.35 74.23 41 58 44 55 45 54

Error-Correcting Codes 60000 77.65 73.21 42 57 45 54 45 54
MicroHD Optimization 50000 78.35 75.21 41 59 43 56 44 55

TABLE 3. Comparison of accuracy and MIA metrics between
HDC and traditional ML models.
Model Train Acc. Test Acc. Avg. TPR Avg. TNR

MNIST
HDC (Best Variant) 97.39% 96.31% 52.3% 46.3%
Fully Connected NN 99.11% 97.26% 0% 100.0%
DT 94.15% 90.85% 70.0% 30.0%

ISCAS85 + EPFL
HDC (Best Variant) 78.49 78.05 65.33% 35%
Graph Convolution
NN

92.49 92.48 67.97% 32.59%

DT 99.96 98.73 0 100%

– Graph Convolution NN: 1 hidden layer (32 nodes),
ReLU activation, and softmax output for ISCAS85+EPFL
netlist for combinational logic gate type classification.

– DT: A scikit-learn classifier with maximum depth
tuned via grid search for both datasets.

The models were trained and evaluated under identical
settings as in Section 6.1 using the MNIST and ISCAS85
+ EPFL datasets. Table 3 presents the classification ac-
curacy (train/test) and MIA vulnerability. For HDC, we
compute the mean TPR and TNR from the membership
results reported in Table 2.

The comparison reveals several significant insights re-
garding both utility and privacy characteristics of HDC
relative to traditional models:

– HDC’s Structural Vulnerability: HDC exhibits consis-
tent membership leakage across domains, with 52.3% TPR
for MNIST and 65.33% TPR for circuits, respectively. It
demonstrates higher attack success than NNs in all cases
(0% for MNIST and 32.59% for circuits), confirming the
hypothesis that HDC’s additive training mechanism pre-
serves measurable training data traces.

– NNs’ Inherent Robustness: NNs achieve 0% TPR on
MNIST, indicating perfect privacy preservation, maintain
strong protection on circuits (32.59% TPR), and suggest
that non-linear transformations effectively obscure mem-
bership signals.

– DTs’ Polar Behavior: DTs exhibit 70% TPR on
MNIST, suggesting vulnerability, while achieving 0% TPR
on circuits, indicating perfect privacy. This contrast high-
lights the extreme domain-dependence in privacy charac-
teristics.

7 Proposed Defense Strategies
Building on our findings about HDC’s vulnerability to

MIAs, we present a defense framework that systematically
addresses three attack surfaces through architectural en-
hancements.



7.1 Unified Defense Framework
Our analysis reveals that HDC’s vulnerability to mem-

bership inference stems from three core weaknesses: trans-
parent feature encoding, sample-specific memorization,
and deterministic similarity scoring. To address these,
we illustrate a unified defense framework through Table 1
that consolidates the strengths of seven strategically tuned
HDC configurations in Section 4. While each of those con-
figurations was initially designed to improve HDC model
accuracy, we observe that they collectively introduce a va-
riety of properties—such as generalization, obfuscation, re-
dundancy, and robustness—that are inherently conducive
to defending against MIAs.
7.2 Representation Obfuscation

The first line of defense disrupts the direct mapping be-
tween inputs and model internals. Adaptive encoding tech-
niques (Section 4.2) replace random projections with data-
aware transformations, using PCA to inject controlled en-
tropy into feature representations. Higher-order binding
operations (Section 4.4) further obscure sample-specific
patterns through multiplicative feature interactions. Our
experiments show these techniques reduce membership in-
ference success rates by 25.3% while incurring only a 1.6%
accuracy penalty on MNIST classification tasks as shown
in Table 4.
7.3 Robust Generalization

The results in Section 6 show we can mitigate overfit-
ting through iterative retraining (Section 4.1) and hybrid
architectures (Section 4.3). The retraining process dynam-
ically adjusts class hypervectors to focus on challenging
samples, smoothing decision boundaries without compro-
mising model capacity. Hybrid models combine neural
feature extractors with HDC classification, maintaining
96.31% accuracy while limiting TPR increases to under
5%. These approaches demonstrate that improved gen-
eralization inherently mitigates membership leakage, as
evidenced by the 31.2% reduction in attack success rates.
7.4 Error-Resilient Decisions

Final layer protections introduce redundancy through
ECCs (Section 4.6) and optimized dimensionality (Sec-
tion 4.5). By encoding class labels with 15-20% redun-
dancy, the model becomes less sensitive to membership
probes while preserving classification reliability. Dimen-
sionality optimization tailors the hypervector space to the
needs of each dataset, achieving 41% TPR at 74. 23% pre-
cision for circuit netlists—a favorable trade-off compared
to the baseline vulnerability of 65. 33%.

TABLE 4. Defense impact on MIA vulnerability calculated from
Table 2.
Strategy TPR Reduction Accuracy Impact

Adaptive Encoding 25.3% -1.6%
Iterative Retraining 31.2% +0.2%
Error-Correcting Codes 25.4% -0.8%

This coordinated approach demonstrates that architec-
tural modifications can simultaneously enhance accuracy
and privacy, a critical advantage for edge deployments
where computational resources are limited. Future work
will formalize theoretical privacy bounds and extend these
principles to thwart model inversion attacks while main-
taining HDC’s energy efficiency.

8 Conclusion
This work demonstrates HDC models’ inherent MIA

vulnerability, with 65.33% success on circuit netlists and
52.3% on MNIST—surpassing traditional ML models. Ar-
chitectural analysis reveals HDC’s additive training and
transparent representation directly enable privacy risks,
while defenses like adaptive encoding achieve 25-31% ef-
fectiveness reductions. The findings challenge HDC’s pre-
sumed security advantages, particularly for hardware secu-
rity and edge AI. We provide the first formal framework for
evaluating and mitigating HDC privacy risks, establishing
critical baselines for secure hyperdimensional computing
designs.


