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Abstract:
Enzyme function classification plays a critical role in under-

standing biological processes, drug discovery, and protein annota-
tion. This paper presents a computational pipeline that leverages
ESM2, a transformer-based protein language model to generate
contextual embeddings from raw amino acid sequences. We ex-
plore strategies to address class imbalance and evaluate the em-
beddings on two supervised learning architectures: a MLP and
a deeper custom neural network. Our observations demonstrate
that the MLP model with oversampling achieves the best perfor-
mance, achieving a test accuracy of 93.5% and macro F1-score
of 91% outperforming deeper architectures and class-weighted
loss. Our findings suggest that even embeddings generated from
a lightweight transformer combined with effective imbalance han-
dling techniques can provide an efficient solution for enzyme func-
tion classification.
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1. Introduction

Enzymes play a vital role in almost all biochemical processes
by accelerating reactions that are essential for life. The func-
tion of an enzyme can be systematically classified using the
Enzyme Commission (EC) number [1]. The EC number is
a numerical classification scheme for enzymes based on the
type of chemical reactions they catalyze. An EC number con-
sists of four digits, where each successive digit provides in-
creasingly specific functional information. [2]. The first level
(Level 1) defines the main class of the enzyme, the second digit
(Level 2) defines the subclass, and so on until the fourth digit
(Level 4). Thus, due to this numbering scheme, the EC number
forms a hierarchical structure. At Level 1, there are seven main

classes: Oxidoreductases (EC1), Transferases (EC2), Hydro-
lases (EC3), Lyases (EC4), Isomerases (EC5), Ligases (EC6),
and Translocases (EC7). Accurate enzyme classification is vi-
tal for understanding metabolic pathways, discovering potential
drug targets, and annotating genomic sequences. However, the
process of experimentally deciphering enzyme function is often
a resource-intensive and time-consuming task. Therefore, com-
putational approaches have emerged as an attractive alternative
to manual annotation. Recent advances in deep learning, espe-
cially the advent of transformer-based protein language mod-
els, offer a promising avenue to classify enzymes. Inspired
by transformer architectures from natural language processing
(NLP), protein models such as Evolutionary Scale Modeling
(ESM) [3] and ProtBERT [4] treat amino acid sequences anal-
ogous to text. This has resulted in generation of rich, contextual
embeddings that capture both structural and functional protein
information directly from the sequences. These embeddings
have been applied to a variety of prediction and classification
tasks. However, applying transformer models to enzyme clas-
sification poses some challenges: many enzyme datasets ex-
hibit class imbalance, with certain EC classes ( EC 1 and EC2)
have significantly more labeled examples than others (EC6 and
EC7). Such imbalances may complicate the training process
and result in a model biased towards the majority classes. Sec-
ondly, protein sequences frequently surpass typical size limits
for standard transformer models, which leads to computation-
ally intensive embeddings.

This paper introduces a computational pipeline leveraging
transformer-based sequence embeddings to predict the top-
level EC classes of enzymes. To address the challenges men-
tioned above, we use a lightweight variant of the ESM model
(esm2 t6 8m UR50D) to generate embeddings from protein se-
quences truncated to the first 512 residues. To counter the
problem of class imbalance, we apply oversampling methods
to balance the training dataset. We evaluate our approach on
a carefully curated dataset of 4,311 enzyme sequences from



the UniProt database. Additionally, we conduct comprehensive
experiments comparing performance of two different classifier
architectures and imbalance techniques: a Multi-Layer Percep-
tron (MLP) and a custom neural network (DeepNN). The re-
mainder of the paper is structured as follows. Section 2 reviews
related work, particularly transformer-based methods and com-
putational enzyme classification. Section 3 provides a de-
tailed description of our methodology, including dataset prepa-
ration, embedding generation, and classifier training. Section
4 presents experimental results along with analysis and discus-
sions, while Section 5 concludes by summarizing our findings
and outlining directions for future research.

2. Related Work

Since the process of experimentally deciphering enzyme
function is often both time-consuming and resource-intensive,
several computational approaches have emerged over the years
to automate the classification of enzymes based on their EC
numbers. Early work by Jensen et al. [5] proposed ProtFun,
one of the first systems to perform enzyme function predic-
tion using an ensemble-based approach using artificial neural
networks (ANNs). These were trained on biologically rele-
vant hand-engineered features like hydrophobicity, amino acid
charge, and secondary structure. While ProtFun generalized
well to low-homology proteins, its performance remained lim-
ited by quality and completeness of the handcrafted features.

ECPred adopted an ensemble-based methodology, combin-
ing three independent predictors: SPMap, BLAST-kNN, and
Pepstats-SVM are based on subsequences, sequence similar-
ity, and amino acid physicochemical features, respectively [6].
ECPred first predicts whether a query sequence is an enzyme
or a non-enzyme, and if identified as an enzyme, it sequentially
predicts its top-level EC class, followed by its subclass, sub-
subclass, and substrate classes.

DEEPre uilized a hybrid deep neural network that combined
convolutional and bidirectional recurrent layers [7]. The raw
sequences were encoded using one hot and position-specific
scoring matrices (PSSM), and their model was able to predict
enzyme functions at all levels of EC.

More recently, Kim et al. [8] utilized transformer architec-
tures to predict EC numbers from amino acid sequences. Their
model was trained on over 22 million protein sequences, and
they addressed class imbalance using focal loss and demon-
strated strong performance across EC classes.

DAttProt is a double-scale attention enzyme class predic-
tion that combined transformer-based self-supervised pretrain-
ing with multiscale convolutions [9]. Their double-scale atten-

tion mechanism captured both spatial and positional relation-
ships within protein sequences.

Building on these advancements, our work uses the pre-
trained ESM2 model [3] to generate high-dimensional contex-
tual embeddings directly from truncated raw amino acid se-
quences. These embeddings are then used for top-level EC
classification, while addressing class imbalance through over-
sampling and class weight techniques.

3. Methodology

3.1. Background: Transformer-Based Protein Language
Model (ESM)

Transformer models, originally proposed for natural lan-
guage processing (NLP), rely on the self-attention mechanism
to generate context-aware embeddings of sequential data [10].
Building on this foundation, BERT [11] introduced a bidirec-
tional training approach of transformer encoders, showing that
self-attention can effectively capture long-term dependencies
within sequences.

The self-attention mechanism computes relationships be-
tween different tokens in an input sequence through a scaled
dot-product operation. Each input token is projected into three
vectors: a query qi from input to i and a set of keys kj to gen-
erate the output. The final output is derived from the weighted
average of values vi through the attention function. Each input
token is transformed by three learnable weight matrices to cre-
ate the corresponding queries, keys, and values. This attention
output is then computed as the weighted sum of the value vec-
tors, with weights determined by the similarity of queries and
keys. Mathematically, the attention function is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q, K, and V are matrices of queries, keys, and values
respectively and dk represents the dimensionality of the input
queries and keys, acting as a mechanism to mitigate the po-
tential computational instability caused by large inputs in the
attention function, thus ensuring computational stability.

In this study, we will utilize Evolutionary Scale Modeling
(ESM), a transformer-based protein language model pretrained
on millions of protein sequences to capture evolutionary and
structural information [3]. ESM uses a standard transformer ar-
chitecture composed of stacked self-attention layers, layer nor-
malization, and feed-forward networks. Its pretraining objec-
tive enables it to learn both structural and functional properties
from raw sequences, making it effective for enzyme classifica-
tion.
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FIGURE 1. Proposed Pipeline

3.2 Proposed Pipeline

The proposed framework leverages the representational
power of transformer-based protein language models to classify
enzymes according to their top-level EC classes. The pipeline
consists of three major stages: data curation and preprocess-
ing, embedding generation using ESM, and multiclass classi-
fication. The pipeline begins with the collection of protein
sequences from the UniProt database, downloaded in FASTA
format. Each sequence is associated with a unique identifier.
Using these identifiers, we query the UniProt REST API to re-
trieve the corresponding enzyme annotations. We focus on pre-
dicting the first digit of the EC number, corresponding to the
enzyme’s primary functional class. Given that the transformer
architecture have a quadratic memory complexity with respect
to sequence length, we apply an additional pre-processing step
where each sequence is truncated to a maximum length of 512
residues.. The truncated sequences are tokenized using the
ESM-specific tokenizer. The ESM uses a character-level tok-
enizer where each amino acid in a protein sequence is treated
as a single token. The tokenized sequences are fed then into
the pretrained transformer-based language model, specifically
the lightweight esm2 t6 8m UR50D variant of ESM, which
consists of six transformer layers and eight million parame-
ters. The model processes the tokenized sequences using multi-
layer self attention mechanism to capture residue-residue inter-
actions and generates rich contextual embeddings. These per-
residue embeddings are averaged across the sequence length
to output a single, fixed-dimensional (320-dimensional) em-
bedding vector which represents each enzyme. Following em-
bedding extraction, we address the class imbalance within our
training dataset through two strategies: oversampling and class
weights. RandomOverSampler is applied to the training set,

increasing the representation of minority enzyme classes by
duplicating their instances until we had balanced class pro-
portions. Alternatively, class weights inversely proportional
to class frequencies are used to calculate loss to give higher
importance to underrepresented classes during training. These
embeddings serve as input features for supervised classification
models. We evaluate two architectures: a Multi-Layer Percep-
tron (MLP) and a custom Neural Network, both designed to
output a probability distribution over the seven enzyme classes.
Class predictions are made by applying a softmax activation to
the final logits. The proposed pipeline effectively integrates cu-
rated biological sequence data, transformer-based embeddings,
and supervised classification techniques to address the enzyme
classification task.

4. Experimental Results

In the following section, we detail the experimental setup,
performance evaluation, and insights we gained from applying
this pipeline to real-world enzyme data.

4.1. Dataset

The dataset used in this study was obtained from the UniProt
Knowledgebase [12], initially comprising of approximately
58,000 enzyme sequences. After filtering the entries with valid
EC numbers, we obtained a final dataset of 4,311 sequences
labeled with their corresponding top-level EC classes. Each
enzyme sequence was associated with a unique UniProt ID.
The corresponding EC numbers were retrieved via the UniProt
REST API. We focused only on the first digit of the EC num-
ber, thereby reducing the problem to a seven-class classifica-
tion. The dataset exhibited significant class imbalance, with



EC 1 and EC 4 having the highest representation, and EC 6
and EC 7 having the lowest. Figure 2 shows the distribution of
EC classes in the data. To ensure balanced evaluation, stratified
sampling was applied when splitting the dataset into training
(80%), validation (10%), testing (10%). Stratification ensured
that the class proportions remained consistent across various
splits.

4.2. Preprocessing and Embedding Generation

Each protein sequence was first processed to ensure com-
patibility with transformer models which have quadratic mem-
ory complexity with respect to sequence length. The pro-
tein sequences collected were truncated to a maximum of 512
amino acids. The processed sequences were then tokenized
using the ESM batch converter, which applied a character-
level tokenizer. We used the pretrained esm2 t6 8m UR50D
model, consisting of six transform layers and about 8 million
parameters. For each sequence, hidden state representations
were extracted from layer six of the model, which captured
intermediate-level sematic and structural information. These
per-residue embeddings were aggregated using mean pooling
to produce a single fixed-size 320-dimensional vector repre-
sentation for each protein. These embeddings serve as input
features for all subsequent classification models. To effectively
manage GPU memory, we processed the sequences in batches
and cleared the memory cache periodically.
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4.3. Model Implementation

To evaluate the quality of the generated embeddings for en-
zyme classification, we designed two supervised learning ar-
chitectures: a shallow Multi-Layer Perceptron (MLP) and a

deeper Neural Network, both of which were implemented us-
ing PyTorch [13]. 1 It consisted of two hidden layers with
128 and 64 neurons respectively, each followed by ReLU acti-
vations and dropout layers. The DeepNN model comprised of
three hidden layers with dimensions 256, 128, 64 respectively
to provide greater representation. To address class imbalance,
two strategies were explored. In the oversampling approach,
we used RandomOverSampler technique to balance the training
data by duplicating instances from minority classes. The sec-
ond approach was computing balanced weights and using them
in the CrossEntropyLoss function. This allowed the model to
penalize misclassifications of minority classes more heavily.
All models were trained using Adam optimizer with an initial
learning rate of 0.001 and batch size of 32. The models were
trained for up to 100 epochs with early stopping if validation
loss failed to improve for 10 consecutive epochs.

Initial Dataset 
58000 

sequences

Filtered Valid 
Enzymes and 

their ID-EC 
mapping

Pre-trained 
ESM2 

Transformer

Through UniProt API

Protein 
Embeddings

6 layers, 8 million 
parameters, Embedding 

size: 320

MLP + 
Oversampling 

Final model 
with best 
results

MLP + Class 
Weights

NN + 
Oversampling

NN + Class 
Weights

Input: 320 
dimensional 
embedding

Fully connected 
layer + ReLU 
(128 units) 

Fully connected 
layer + ReLU 

(64 units)

Fully connected 
layer (7 units - 

7 classes)

MLP Architecture

Input layer: 320 
dimensional 
embedding

Fully connected 
layer + ReLU 
(256 units)

Fully connected 
layer + ReLU 
(128 units)

Fully connected 
layer (7 units - 

7 classes)

DeepNN Architecture

Dropout layer

Dropout layer

Dropout layer

Dropout layer

Fully connected 
layer + ReLU 

(64 units)

4311 Sequences

Test accuracy: 
93% 

Macro F1: 91%

Test accuracy: 
93% 

Macro F1: 70%

Test accuracy: 
90% 

Macro F1: 79%

Test accuracy: 
89% 

Macro F1: 72%

FIGURE 3. Detailed Implementation Architecture

4.4. Results and Discussion

The performance of each model was evaluated on a held-out
test set consisting of 432 sequences. In addition to test accu-
racy, we used several other metrics like precision, recall, F1-

1A GitHub repository at Enzyme Classification has been developed, and
access can be granted upon request.

https://github.com/jateen19/Enzyme-Classification-using-Transformer-Based-Embeddings


score and confusion matrix to provide insight into class-specific
behavior. The MLP model trained with oversampling achieved
the highest performance achieving a test accuracy of 93% and
a macro F1-score of 91%. This model showcased strong gener-
alization across both majority and minority classes, effectively
mitigating the class imbalance. As shown in Table 2, majority
classes EC 1 and EC 4 achieved very high precision and recall
values while minority classes also achieved competitive recall
scores.

The DeepNN model trained with random oversampling also
reached a similar test accuracy of 93%, however its macro F1-
score was relatively lower at 70% as while it performed well
on majority classes, it struggled on minority ones. When using
class weights, both the MLP and DeepNN exhibited slightly
lower performance. The MLP with class weights achieved a
test accuracy of 90% and a macro F1-score of 79%, while the
DeepNN with class weights achieved a test accuracy of 89%
and a macro F1-score of 72%. A comparison of different mod-
els and strategies used is shown in Table 1.

Model Accuracy Macro F1-score
MLP + Oversampling 93% 91%

DeepNN + Oversampling 93% 70%
MLP + Class Weights 90% 79%

DeepNN + Class Weights 89% 72%

TABLE 1. Comparison of different models and imbalance handling
strategies

Class Precision Recall F1-score Support
1 0.98 0.96 0.97 195
2 0.89 0.92 0.91 52
3 0.75 1.00 0.85 47
4 0.97 0.83 0.90 115
5 0.81 0.94 0.87 18
6 1.00 0.75 0.86 4
7 1.00 1.00 1.00 1

Macro Avg 0.91 0.92 0.91 432
Weighted Avg 0.94 0.93 0.93 432

TABLE 2. Classification Metrics for MLP + oversampling model

Overall, random oversampling proved to be a more effec-
tive strategy for handling class imbalance. Moreover, the sim-
pler architecture of the MLP seemed to outperform the deeper
network. This suggested that the generated ESM embeddings
already captured sufficiently rich information. Based on our
observations, we selected the MLP model trained with random
oversampling as the final model. It’s training and validation
accuracy and loss curves are presented in Figure 4.
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Moreover, Figure 5 provides detailed insights into the MLP
model’s classification performance with oversampling. The
model showcases excellent performance across both majority
and minority classes, indicating that the oversampling strategy
was effective in mitigating class imbalance.
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5. Conclusions and Future Work

This study presents a pipeline for enzyme classification us-
ing embeddings from the pretrained transformer model ESM2.
We evaluated the embeddings with multiple classifiers, in-
cluding an MLP and a custom neural network, and addressed
class imbalance using both oversampling and class weight-
ing. Oversampling the minority classes led to better overall
performance, with the MLP trained with RandomOverSampler
achieving 93.5% test accuracy and strong precision, recall, and
F1 scores, even for rare classes. Although the neural network
with class weights also performed competitively, it was less ef-
fective at handling minority classes. Our findings demonstrate
the potential of combining transformer-based protein embed-
dings with balancing techniques for enzyme function predic-
tion. Future directions include extending classification to full
EC hierarchies, exploring larger ESM variants, and applying
advanced pooling methods to better capture functionally im-
portant residues.
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