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Abstract: 
This study proposes MAP-CARE, a radiomics-based 

framework for predicting future surgical intervention in 

patients with asymptomatic carotid artery plaques using 

multi-modal MRI. Unlike prior research that focuses on 

stroke risk prediction, MAP-CARE directly targets the clinical 

decision of whether carotid revascularization, such as 

endarterectomy or stenting, will be indicated within one year, 

even before the onset of neurological symptoms. Radiomic 

features are extracted from 3D Turbo Spin Echo (3D-TSE) 

and Time-of-Flight (TOF) MR sequences to capture both 

structural and hemodynamic characteristics of carotid plaques. 

Feature selection is performed using principal component 

analysis and mutual information. Four machine learning 

models (logistic regression, support vector machine, 

LightGBM, and random forest) are trained and evaluated 

using stratified five-fold cross-validation. A total of 36 carotid 

arteries from 18 patients were analyzed. The combination of 

mutual information-based selection and a random forest 

classifier yields the best performance, achieving an AUC of 

0.933. To enhance model interpretability, SHapley Additive 

exPlanation (SHAP) is applied to identify important geometric 

and texture-based features. By bridging non-invasive imaging 

with real-world clinical outcomes, MAP-CARE provides an 

interpretable and actionable tool for proactive treatment 

planning in asymptomatic carotid stenosis. 
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1. Introduction 

Carotid atherosclerotic plaque is a major risk factor for 

ischemic stroke, and has been observed in up to 87.3% of 

individuals aged around 64 years in a population-based 

study [1]. Treatment options for carotid artery stenosis 

include medical therapy, such as antiplatelet agents, and 

surgical interventions such as carotid artery stenting (CAS) 

and carotid endarterectomy (CEA). The decision to perform 

surgical treatment is typically based on clinical factors such 

as the degree of stenosis and the symptomatic status [2]. 

Magnetic resonance angiography (MRA) has 

improved non-invasive visualization of carotid stenosis and 

plaque morphometry, offering high soft tissue contrast and 

allowing assessment of key features such as vessel wall 

structure, intraplaque hemorrhage, and ulceration. However, 

conventional morphological evaluation does not adequately 

capture the biological heterogeneity and dynamic 

progression of plaques crucial for cerebrovascular event 

risk, hampering differentiation between stable and unstable 

plaques and complicating treatment planning [3].  

Radiomics extracts high-dimensional features from 

medical images, enabling reproducible characterization of 

plaque structure, texture, and intensity. By capturing subtle 

imaging patterns beyond human perception, radiomics 

enables objective assessment of important components such 

as fibrous cap integrity, intraplaque hemorrhage, and vessel 

wall structure. 

Recent studies have applied radiomics and machine 

learning (ML) to predict stroke risk and classify plaque 

vulnerability. For example, Zhang et al. developed an 

MRI-based radiomics model to differentiate symptomatic 

from asymptomatic plaques [4], while Han et al. proposed a 

clinical-radiomics model for ischemic stroke prediction [5]. 

Although these studies demonstrate the utility of radiomics 

in event prediction, they do not directly support treatment 

decisions. 

While stroke risk prediction is clinically valuable, 

treatment decisions also depend on imaging indicators such 

as plaque progression, restenosis, and new high-risk 

features. For example, surgery may be warranted even with 

low stroke risk if follow-up imaging reveals progressive 

luminal narrowing, intraplaque hemorrhage, or ulceration. 
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guideline [6] reflects this nuance, recommending that 

revascularization for asymptomatic 70-99% restenosis be 

considered only after multidisciplinary team (MDT) 

review, particularly when imaging is inconclusive. In such 

cases, clinical judgment is highly subjective and variable 

across institutions.  

To address this gap, we propose a predictive 

framework for surgical intervention using multi-modal 

MRA-based radiomics and interpretable machine learning. 

Specifically, we combine 3D Turbo Spin Echo (TSE) 

MRA, which provides vessel wall structure, with 

Time-of-Flight (TOF) MRA, which captures hemodynamic 

properties. Radiomic features extracted from both 

modalities are integrated to capture plaque characteristics 

from complementary perspectives. Dimensionality 

reduction and feature selection are performed, and multiple 

machine learning classifiers are evaluated. To enhance 

interpretability, SHapley Additive exPlanations (SHAP) are 

used to quantify feature importance and support clinical 

reasoning. 

We name this model MAP-CARE (Multi-modal 

Analysis for Prediction of Carotid Artery Revascularization 

Eligibility). To the best of our knowledge, this is the first 

interpretable radiomics-based approach designed to predict 

future surgical intervention in asymptomatic carotid artery 

disease. MAP-CARE goes beyond stroke risk estimation by 

enabling individualized treatment guidance and providing a 

novel tool for supporting proactive stroke prevention and 

objective surgical decision-making. 

2. Datasets 

This study analyzed carotid MRA data from 18 

patients with asymptomatic internal carotid artery (ICA) 

stenosis, collected at Harima-Himeji General Medical 

Center (Hyogo, Japan). In total, 36 carotid arteries were 

included. The cohort consisted of 13 males and 5 females, 

with a mean age of 73.2 ± 7.6 years (n = 17; age data were 

missing for one patient).  

Among the 36 arteries, 13 underwent CAS or CEA 

within one year and were labeled "surgical," while the 

remaining 23 were managed conservatively and labeled as 

"follow-up." These binary labels served as prediction 

targets. 

All MRA scans were acquired between 2016 and 2020 

using a 1.5T MRI scanner (Philips Medical Systems). Each 

patient underwent two sequences, 3D TSE (TR/TE = 

400/12 ms, field of view = 150 × 150 mm2, matrix = 320 × 

320, slice thickness = 1.3 mm, in-plane resolution = 0.47 × 

0.47 mm2) and 3D TOF (TR/TE = 20/3.9 ms, field of view 

= 200 × 200 mm2, matrix = 512 × 512, slice thickness = 2.0 

mm, in-plane resolution = 0.39 × 0.39 mm2). Despite minor 

variations in acquisition parameters, all images were 

resampled to an isotropic voxel size of 0.223 × 0.223 × 

0.223 mm³ and resized to 224 × 224 × 112 voxels. 

Manual annotations of the plaque and vessel wall 

regions were performed on the TSE images by trained 

researchers under the supervision of board-certified 

neurosurgeons. These binary masks were used to define the 

regions of interest for radiomic feature extraction. An 

example is shown in FIGURE 1. 

This study was approved by the Ethics Committee of 

Harima-Himeji General Medical Center (Approval No. 

2023-3), and the requirement for informed consent was 

waived due to the retrospective nature of the study. 

3. MAP-CARE Framework 

We propose MAP-CARE (Multi-modal Analysis for 

Prediction of Carotid Artery Revascularization Eligibility), 

a predictive framework designed to estimate whether 

carotid revascularization will be selected for asymptomatic 

patients within one year. The goal is to model real-world 

clinical decisions rather than disease status or stroke risk. 

This framework uses two MRI sequences, 3D TSE and 

3D TOF, which provide complementary anatomical and 

hemodynamic information. Fixed-size three-dimensional 

regions of interest (ROIs) are centered on the manually 

identified carotid bifurcation. From these regions, radiomic 

features are extracted and dimensionality is reduced before 

being used to train supervised classifiers. SHAP analysis is 

applied to enhance interpretability by quantifying feature 

contributions. 

Unlike conventional models targeting objective 

outcomes, MAP-CARE is designed to predict treatment 

decisions that reflect complex clinical reasoning influenced 

by both imaging and non-imaging factors. This introduces 

challenges such as implicit label variability, potential label 

noise, and institutional bias, which require careful design of 

input features, model selection, and interpretability control.  

To address these challenges, MAP-CARE employs 

standardized ROI definition to reduce input variability. 

Feature dimensionality is reduced to focus on informative 

 
(a) 3D Turbo Spin Echo 

 
(b) 3D Time-of-Flight 

FIGURE 1. Representative axial MRA images of the internal carotid artery. 
TSE provides high soft tissue contrast and enables clear delineation for the 

vessel wall and surrounding plaque structure, while TOF emphasizes 

intraluminal blood flow signals, supporting complementary hemodynamic 
assessment. 



 

 

predictors while minimizing overfitting. Instead of using 

opaque deep learning models, interpretable classifiers are 

trained, and SHAP analysis is used to verify the clinical 

plausibility of each prediction. This approach helps mitigate 

label noise, highlight feature stability, and reduce the 

impact of institutional bias. 

MAP-CARE is structured to reflect guideline-based 

clinical workflows and supports interpretable prediction of 

treatment decisions. An overview of the framework is 

shown in FIGURE 2. 

4. Implementation of MAP-CARE 

This section elaborates on the technical 

implementation of the MAP-CARE framework, including 

preprocessing, radiomic feature extraction, model training, 

and interpretability analysis.  

4.1. Image Standardization and ROI Definition 

All 3D TSE and TOF MRA images are resampled to 

an isotropic voxel size of 0.223 × 0.223 × 0.223 mm³, using 

cubic interpolation to standardize spatial resolution across 

subjects and modalities. This resampling is applied prior to 

any other processing steps to ensure consistency during 

feature extraction. 

Binary plaque masks are manually annotated on the 

resampled TSE images under the supervision of 

board-certified neurosurgeons, as TSE provides superior 

visualization of the vessel wall. For TOF images, the same 

ROI coordinates defined on the TSE images are applied 

directly, based on consistent spatial alignment between the 

modalities established during resampling. For each artery, 

the carotid bifurcation is manually identified as the 

anatomical reference point. A ROI measuring 50 mm × 50 

mm × 25 mm in physical space is extracted, centered on the 

bifurcation in the axial plane and spanning 4 mm superior 

and inferior along the body axis. This definition ensures 

that both the plaque and adjacent vessel wall consistently 

captured across patients. 

To standardize input dimensions for downstream 

analysis, the extracted ROIs are resized or zero-padded to a 

voxel grid of 224 × 224 × 112. This procedure is uniformly 

applied to both TSE and TOF modalities to ensure spatial 

correspondence between structural and hemodynamic 

information. 

4.2. Radiomic Feature Extraction from Multi-Modal 

MRI 

Radiomic features are extracted from standardized 

ROIs of both TSE and TOF images to quantitatively 

characterize plaque properties from structural and 

hemodynamic perspectives. A total of 92 features are 

computed for each modality, resulting in 184 features per 

artery when combining the two. 

The extracted features cover five major categories 

commonly used in radiomic analysis [7], as summarized in 

TABLE 1. 

All features are calculated independently for the TSE 

and TOF ROIs using the same physical ROI size and voxel 

resolution. Voxel intensities are discretized with a fixed bin 

width to standardize texture computation across cases. No 

filtering or wavelet-transformed features are included in 

this study, in order to focus on features derived from the 

original image intensities. Shape features are computed 

directly from binary masks on resampled images without 

sub-voxel or anti-aliasing interpolation. 

The combined feature vector serves as the input for the 

following feature selection and classification stages. 

 
FIGURE 2. Overview of the MAP-CARE Framework. 

TABLE 1. Categories of radiomic features (Total = 92 features). 

Category Count Description 

First-Order Statistics 19 

Intensity-based metrics 

describing voxel value 

distribution 

Shape-based (3D) 17 

Geometric descriptors of the 

plaque and surrounding vessel 

wall 

Gray Level 

Co-occurrence Matrix 

(GLCM) 

24 

Texture features based on 

gray-level spatial 

co-occurrence 

Gray Level Size Zone 

Matrix (GLSZM) 
16 

Measures of size-based 

intensity homogeneity 

Gray Level Run 

Length Matrix 

(GLRLM) 

16 

Describes directional 

uniformity and run length of 

similar intensities 
 



 

 

4.3. Feature Selection and Dimensionality Reduction 

To reduce the risk of overfitting and enhance 

generalization performance, two feature reduction strategies 

are applied and compared: PCA and MI-based selection. 

PCA is an unsupervised linear transformation that 

projects the original feature space onto orthogonal 

components while preserving the majority of variance. In 

this study, components retaining 95% of the cumulative 

variance are selected to represent the reduced feature set. 

MI-based feature selection is a supervised method that 

quantifies the statistical dependency between individual 

features and the binary target variable (surgical vs. 

follow-up). Features are ranked based on MI scores, and 

feature subsets are incrementally constructed by adding one 

feature at a time in descending order of importance. Among 

these subsets, the one achieving the highest cross-validated 

AUC is selected as the final input.  

Both dimensionality reduction approaches are applied 

independently to the 184-dimensional feature vector, which 

combines features from TSE and TOF images. The 

effectiveness of each method is evaluated in the subsequent 

classification step. 

To ensure reproducibility, MI computation is 

performed using discretized feature values and stratified 

cross-validation to estimate mutual dependency reliably. 

PCA is applied after z-score normalization of all features to 

equalize scaling across modalities and categories.  

4.4. Classification for Surgical intervention Prediction  

To predict whether each carotid artery would undergo 

surgical intervention within one year, supervised 

classification models are trained on the reduced feature sets 

obtained from the previous step. In this study, four widely 

used machine learning algorithms are evaluated for binary 

classification: logistic regression, support vector machine 

(SVM), light gradient boosting machine (LightGBM), and 

random forest. These classifiers represent diverse modeling 

paradigms, ranging from linear models to tree-based 

ensemble methods. 

All models are trained and evaluated using stratified 

5-fold cross-validation, ensuring that the proportion of 

surgical and follow-up cases is preserved within each fold. 

This strategy mitigates the effects of class imbalance and 

provides robust performance estimates. Each classifier is 

applied to the same input feature sets derived via either 

PCA or MI-based selection, allowing for fair comparison 

across algorithms and dimensionality reduction methods.  

To ensure model transparency and support clinical 

interpretability, SHAP values are applied to the trained 

models, providing both global insight into feature 

importance and local explanations for individual 

predictions. This interpretability enables clinicians to 

understand which factors influenced each decision. 

5. Experimental Results 

5.1. Evaluation Protocol 

All experiments were conducted on Ubuntu 24.04 with 

Python 3.9. Radiomic feature extraction was performed 

using PyRadiomics (version 3.1.0) with a fixed bin width of 

25. Treatment prediction and evaluation were implemented 

using Scikit-learn (version 1.6.1) for logistic regression, 

SVM, and random forest, and LightGBM (version 4.6.0) 

for gradient boosting. 

All classifiers were trained after hyperparameter 

tuning using grid search. Logistic regression used L1 

regularization, SVM employed an RBF kernel, and both 

random forest and LightGBM were trained with 300 

estimators. The learning rate for LightGBM was set to 0.01. 

Model performance was assessed using four standard 

metrics: AUC, accuracy, sensitivity, and specificity. These 

metrics were computed on the test set of each fold, and the 

average values across all five folds were reported. 

5.2. Classification Performance  

Model performance was compared across four 

classifiers and two feature selection methods. TABLE 2 

summarizes the average results of AUC, precision, recall, 

and F-value from stratified 5-fold cross-validation. Each 

classifier was trained using the features selected via either 

PCA or MI. This enables a fair comparison across different 

model architectures and selection strategies. 

In MI-based selection, features were incrementally 

added in descending order of importance within each fold. 

The optimal number of features and the specific features 

selected varied depending on the classifier and fold. For 

example, random forest achieved the highest AUC using 11 

features on average, while other classifiers (such as SVM 

and LightGBM) performed best with different subset of 

features, depending on fold. 

Among the evaluated models, random forest combined 

with MI-based feature selection achieved the highest AUC 

of 0.933, along with the highest recall (0.923) and F-value 

(0.889), indicating the most effective discrimination 

between surgical and follow-up cases. LightGBM with MI 

also showed strong performance (AUC = 0.893), while 

logistic regression and SVM performed slightly lower 

(AUC = 0.876 and 0.856, respectively). In contrast, all 



 

 

models performed worse under PCA-based selection, with 

AUC values ranging from 0.562 to 0.823. 

In addition, FIGURE 3 compares ROC curves for 

each model under PCA and MI conditions, based on the 

integrated results from five-fold stratified cross-validation. 

These ROC curves represent the results of one fold, and the 

overall performance is summarized in Table 2. The 

improvement in performance due to MI-based selection is 

particularly notable in tree-based models such as lightGBM 

and random forest. This suggests that MI better captures 

class-relevant features, leading to enhanced predictive 

accuracy in models capable of handling non-linear 

relationships. 

Overall, models using MI-selected features 

outperformed those using PCA in most cases, suggesting 

that supervised selection more effectively captured the 

imaging features relevant to treatment decision-making. 

These results highlight the advantage of ensemble 

classifiers and MI-based feature selection in predicting 

surgical intervention from asymptomatic carotid plaque 

characteristics. 

5.3. Feature Importance Analysis Using SHAP 

To interpret the results of the classification models, 

SHAP values were calculated to evaluate the contribution 

of each feature to the model’s decision-making process. 

FIGURE 4. illustrates the global feature importance for the 

MI-based random forest model, based on the performance 

of a single fold. The plot shows the SHAP values for the top 

features, highlighting those with the greatest impact on the 

model’s predictions. In this case, shape-based features, 

particularly Sphericity in TSE and Compactness in TOF, 

were found to be the most important predictors of surgical 

intervention. 

Other relevant features included Surface Area to 

TABLE 2. Performance comparison of classifiers with PCA and MI 

Feature 

Selection 
Model 

 
AUC Precision Recall F-value 

PCA 

Logistic 

Regression 

 
0.823 0.688 0.846 0.759 

SVM  0.712 0.833 0.385 0.526 

LightGBM  0.562 0.423 0.846 0.564 

Random 

Forest 

 
0.605 0.500 0.385 0.435 

MI 

Logistic 

Regression 

 
0.876 0.818 0.692 0.750 

SVM  0.856 0.750 0.692 0.720 

LightGBM  0.893 0.833 0.769 0.800 

Random 

Forest 

 
0.933 0.857 0.923 0.889 

 

  
(a) PCA - Logistic 

Regression 
(b) PCA - SVM 

  
(c) PCA - LightGBM (d) PCA - Random Forest 

  
(e) MI – Logistic Regression (f) MI – SVM 

  
(g) MI – LightGBM (h) MI – Random Forest 

FIGURE 3. ROC values for each classifier under two feature selection 
methods. (a–d) show results using PCA, and (e–h) show results using MI. 

 
FIGURE 4. Global feature importance for random forest with MI-based 

feature selection. The bar plot shows SHAP values for the top features, 

highlighting those with the greatest impact on the model’s predictions. 
Results are based on the performance of a single gold.  



 

 

Volume ratio, Maximum 2D diameter, and intensity-based 

texture features from TOF images, such as Zone Entropy 

(ZE), Mean, and Joint Average. These results suggest that 

both geometric and intensity-related heterogeneity 

contribute significantly to surgical intervention prediction. 

6. Discussion 

In this study, we proposed MAP-CARE, a novel 

framework for predicting future surgical intervention in 

patients with asymptomatic carotid artery stenosis. 

MAP-CARE leverages multi-modal MRI, specifically 

3D-TSE and TOF sequences, and machine learning 

techniques to support image-based clinical decision-making, 

particularly in determining surgical eligibility before 

symptom onset. 

The effectiveness of the framework was demonstrated 

through both predictive performance and interpretability. In 

stratified 5-fold cross-validation, the combination of mutual 

information-based feature selection and a random forest 

classifier achieved the highest performance with an AUC of 

0.933, outperforming PCA-based dimensionality reduction 

methods used in this study as a baseline. The advantage of 

MI was particularly evident in non-linear models such as 

LightGBM and random forest, likely because MI can 

prioritize features that are more directly related to class 

separation. 

SHAP-based analysis confirmed that both 

morphological and intensity-based features contribute 

meaningfully to the prediction of surgical intervention. This 

suggests that structural complexity of the plaque, including 

shape irregularities and signal heterogeneity, may influence 

the clinician’s decision to proceed with revascularization, 

even in asymptomatic cases. 

Several limitations of the present study should be 

acknowledged. First, the dataset was relatively small and 

derived from a single institution, which may limit the 

generalizability of the results. Future studies should expand 

the dataset and validate performance across multiple 

clinical sites to assess reproducibility and robustness. 

Second, the plaque annotations were performed by a single 

reader, and inter-observer reproducibility was not assessed. 

This limitation must be addressed in subsequent work to 

ensure the reliability of the ground truth. 

Looking ahead, a key next step is the implementation 

of MAP-CARE in real-world clinical settings. Its utility as 

a clinical decision support system (CDSS) should be 

prospectively evaluated. It will be important to examine 

how well the model aligns with physician decision-making 

and how it can contribute to optimizing resource allocation 

and patient outcomes. 

7. Conclusion 

We proposed MAP-CARE, a radiomics-based 

framework to predict future surgical intervention in 

asymptomatic carotid stenosis using multi-modal MRI and 

machine learning. Through rigorous evaluation, the 

framework demonstrated strong predictive performance, 

particularly when mutual information-based feature 

selection was combined with non-linear models, and it 

offered clinical interpretability via SHAP analysis. These 

findings suggest that radiomic features reflecting both 

morphological and intensity-based characteristics can 

support objective decision-making for surgical intervention, 

highlighting MAP-CARE as a clinically useful tool for 

proactive stroke prevention in asymptomatic populations. 

References 

[1] H. Ihle-Hansen et al., “Carotid Plaque Score for 

Stroke and Cardiovascular Risk Prediction in a Middle 

Aged Cohort From the General Population,” J Am 

Heart Assoc., vol. 12, no. 15, 2023. 

[2] N. Azuma et al., “2022 Guideline on the Management 

of Peripheral Arterial Disease,” JCS/JSVS, 2022. 

[3] Hafiane A. “Vulnerable Plaque, Characteristics, 

Detection, and Potential Therapies.,” Journal of 

Cardiovascular Development and Disease, 2019. 

[4] R. Zhang, Q. Zhang, A. Ji, P. Lv, J. Zhang, C. Fu, and 

J. Lin, “Identification of high-risk carotid plaque with 

MRI-based radiomics and machine learning,” 

European Radiology, Vol. 31, No. 5, pp. 3116-3126, 

2021. 

[5] N. Han, W. Hu, Y. Ma, Y. Zheng, S. Yue, L. Ma, J. Li 

and J. Zhang, “A clinical-radiomics combined model 

based on carotid atherosclerotic plaque for prediction 

of ischemic stroke,” Frontiers in Neurology, Vol. 15, 

No. 1343423, 2024. 

[6] A. R. Naylor, J. B. Ricco, G. J. de Borst, S. Debus, J. 

de Haro, A. Halliday, et al., “Management of 

atherosclerotic carotid and vertebral artery disease: 

2023 Clinical Practice Guidelines of the European 

Society for Vascular Surgery (ESVS),” European 

Journal of Vascular and Endovascular Surgery, vol. 65, 

no. 3, pp. 267–369, 2023. 

[7] P. Lambin, E. Rios-Velazquez, R. Leijenaar, et al., 

"Radiomics: the bridge between medical imaging and 

personalized medicine," Nat. Rev. Clin. Oncol., vol. 

17, no. 12, pp. 749–762, 2020. 


