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Abstract: 
With the widespread adoption of clean energy technologies, 

accurate forecasting of renewable energy outputs has become 

increasingly critical. This study explores the application of 

Kolmogorov–Arnold Networks (KAN) in the domain of 

renewable energy prediction. KAN, inspired by the 

Kolmogorov–Arnold representation theorem, replace 

traditional linear weights in multilayer perceptrons (MLPs) 

with spline functions, enhancing model interpretability. Unlike 

conventional black-box models, KAN offer significant 

explanatory capabilities. We conducted experiments using 

real-world wind and photovoltaic power output data from 

Shandong Province, China. The results demonstrate that KAN 

outperform benchmark models, including MLPs and Long 

Short-Term Memory (LSTM) networks, in most scenarios, 

while also providing superior interpretability. These findings 

suggest that KAN hold substantial potential for practical 

applications in renewable energy forecasting. 
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1. Introduction 

With the rapid development of the economy and the 

continuous improvement of living standards, the demand for 

energy has been steadily increasing. However, the use of 

traditional fossil fuels, such as coal, oil, and natural gas, 

releases pollutants that damage the environment and 

contribute to global warming [1]. Due to their non-renewable 

nature and limited reserves, the excessive exploitation of 

fossil fuels will eventually lead to the depletion of energy 

resources. Therefore, addressing the energy crisis and 

environmental issues necessitates the development and 

utilization of renewable energy sources [2]. Wind and solar 

energy are clean, widely distributed forms of renewable 

energy that have attracted global attention and are considered 

competitive and viable alternatives to fossil fuels 

[3][4].However, the intermittency and randomness of these 

renewable energy sources significantly impact the security 

and stability of power grids. Additionally, challenges in 

dispatching, managing, and optimizing renewable energy 

integration at various grid scales are major barriers to 

achieving high penetration levels [5]. Therefore, improving 

the prediction accuracy of renewable energy generation is a 

key solution to these issues. 

In wind power forecasting, several types of modeling 

approaches are generally employed: physics-based methods, 

statistical techniques, artificial intelligence–driven models, 

and hybrid models that combine these approaches. Guo N.Z. 

et al. proposed a short-term wind power prediction neural 

network that accounts for wake effects, in which certain 

network nodes are determined by an analytical wake model to 

enhance the model’s short-term accuracy [6]. Kim Y. and Hur 

J. introduced a statistical ensemble forecasting model 

composed of three combined prediction methods and applied 

it to a wind farm in Jeju Island, South Korea [7]. Kisvari A. et 

al. developed a novel deep learning network based on gated 

recurrent units (GRU) and demonstrated its superior accuracy 

and robustness [8]. Ma Z. and Mei G. proposed a hybrid 

attention-based deep learning approach that combines 

convolutional neural networks (CNNs), multiple stacked 

bidirectional long short-term memory networks (Bi-LSTM), 

and an attention mechanism to achieve efficient and precise 

wind power forecasting [9]. 

In the photovoltaic power generation domain, the types 

of forecasting models are fundamentally the same as those 

used for wind power. Monteiro C. et al. in [10] applied 

data-mining techniques on historical cases to generate power 

forecasts along with their associated uncertainties or 

probabilities. David M. et al. in [11] employed a hybrid of 

two standard econometric linear models (ARMA and 

GARCH) to produce probabilistic solar-irradiance forecasts. 

Du Plessis A. et al. in [12] utilized feedforward neural 

networks, long short-term memory (LSTM) networks, and 

gated recurrent unit (GRU) recurrent neural networks for PV 

forecasting, demonstrating the feasibility of deep-learning 



 

 

approaches in this field. 

In 2024, Liu Z. et al. introduced a novel neural-network 

architecture called Kolmogorov–Arnold Networks (KAN) 

[13]. Inspired by the Kolmogorov–Arnold representation 

theorem (detailed in Section 3), they generalised the theorem 

to arbitrary network widths and depths and on this basis 

proposed the KAN architecture. Unlike multilayer 

perceptrons (MLPs), which employ fixed activation functions 

at their nodes (“neurons”), KAN use learnable activation 

functions on their edges (“weights”)—specifically, B-spline 

functions. KAN eliminate all linear weight parameters, 

replacing each one with a univariate spline function, thereby 

achieving superior accuracy and interpretability compared to 

MLPs. The original authors later released an enhanced 

version, KAN 2.0, which improves performance while 

retaining the core architecture [14]. The comparison among 

these three model architectures is shown in Figure 1. 

Accordingly, this work introduces the KAN architecture into 

the renewable-energy forecasting domain to realize improved 

predictive performance. 

   
(a) MLP (b) KAN (c) KAN2.0 

Figure 1. Comparison of the network architectures of MLP, KAN, and KAN 2.0. 
The remainder of this paper is organized as follows: 

Section 2 reviews the latest research advances on KAN; 

Section 3 presents the theoretical foundations of KAN; and 

Section 4 describes the experiments conducted in this study 

along with an analysis of their results. 

2. Related Work 

Since its introduction, KAN has inspired extensive 

research and applications, leading to numerous variant 

models that demonstrate its suitability and superiority in 

areas such as data fitting, complex function learning, 

high-dimensional data or time-series processing, partial 

differential equation solving, graph-structured data handling, 

and hyperspectral image classification [15]. Variants 

integrating KAN with other architectures—chiefly 

convolutional, recurrent, and transformer-based 

models—highlight its versatility when fused with existing 

neural networks for specialized tasks [16]. Although targeted 

studies in power systems are still scarce, renewable-energy 

forecasting fundamentally involves processing and predicting 

time-series data. Consequently, the following focuses on 

KAN’s advances in time-series analysis: 

Vaca-Rubio C. J. et al. demonstrated that, in a real-world 

satellite-traffic forecasting task, KAN outperforms traditional 

multilayer perceptrons (MLPs), delivering more accurate 

predictions with fewer learnable parameters [17].  Genet R. 

& Inzirillo H. proposed TKAN, a hybrid architecture 

combining KAN and LSTM strengths, achieving higher 

accuracy and efficiency in multi-step forecasting tasks [18]. 

Xu K. et al. introduced two KAN-based variants for 

time-series processing, emphasizing enhancements in model 

interpretability to showcase KAN’s potential in predictive 

analytics [19]. Zhou Q. et al. applied KAN to time-series 

anomaly detection (KAN-AD), converting black-box 

methods into schemes that learn weights prior to univariate 

functions, thereby boosting both effectiveness and efficiency 

[20]. Han X. et al. incorporated a mixture-of-experts structure 

into KAN to propose a multi-layer mixed KAN network 

(MMK), demonstrating KAN’s efficacy for multivariate 

time-series forecasting [21]. 

These studies collectively confirm KAN’s feasibility and 

effectiveness for time-series forecasting, providing strong 

justification for introducing KAN into renewable-energy 

prediction tasks in this work. 

3. KAN 

3.1. Kolmogorov–Arnold representation theorem 

In 1957, the Russian mathematician Andrey 

Kolmogorov proposed a revolutionary theorem: any 

continuous multivariate function can be represented as a 

finite superposition of continuous univariate functions, 

thereby decomposing complex multivariate mappings into 

simple one-dimensional components and greatly advancing 

approximation theory and numerical analysis [22]; 

subsequently, in 1958, Vladimir Arnold further generalized 

and confirmed the theorem’s universality in 

higher-dimensional spaces, thus solidifying its theoretical 

foundation and providing powerful tools for machine learning, 

data fitting, and partial differential equations [23]. The 

content of the theorem can equivalently be written in the 

following form: 
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The principal challenge in applying the 

Kolmogorov–Arnold representation theorem directly to deep 

learning is that the theorem inherently involves only two 

layers of nonlinearity and a limited number of terms (2n + 1). 

Consequently, the KAN authors argue that, since the majority 

of functions encountered in practical applications are smooth, 

it is both natural and necessary to extend the KA 

representation to networks of arbitrary width and depth to 



 

 

satisfy modern neural‐network architectural requirements. 

Extensive empirical studies to date have confirmed the 

feasibility and efficacy of this generalization. 

3.2. KAN 

The first step in extending the KA representation 

theorem is to revisit the theorem itself. The KAN authors link 

the seemingly distinct “external” functions
q  and 

“internal” functions 
,q p , and the bridge between them is 

the KAN layer. Specifically, the m-th KAN layer, with mn   

input dimensions and 1mn +  output dimensions, maps an 

input vector mn

m x ¡  to an output vector 1

1
mn

m
+

+ x ¡ . 

By viewing each KAN layer as a means to connect inputs and 

outputs of arbitrary dimensionality, the KA theorem can thus 

be generalized to networks of arbitrary depth. 
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(2) 

Connecting the individual KAN layers into a full 

network: 

 1KAN( ) ( )mm=x Φ Φ Φ xoL o o  (3) 

Since the KA theorem expresses multivariate mappings 

as sums of univariate functions, a KAN realizes this by 

performing summations over its nodes. In practice, this 

means that even simple multiplicative interactions between 

variables must be decomposed into several layers and many 

nodes. To overcome this limitation, KAN 2.0 introduces 

explicit multiplication nodes, thereby enhancing the 

network’s efficiency and accuracy in tasks such as function 

approximation. 

3.3. Activation functions 

One key distinction between KAN and a conventional 

MLP—and indeed one source of KAN’s interpretability—is 

its design and use of learnable univariate activation functions. 

KAN introduces residual activation functions, whose core 

formulation is: 

 ( )( ) ( ) spline( )x w b x x = +  (4) 

where: ( )b x is the base branch, spline( )x is the 

spline branch, w is a global scaling coefficient. 

Similar to a residual connection, the base branch 

typically employs the SiLU activation function, which 

endows the network with a well-behaved, smooth nonlinear 

response from the very start of training (rather than learning 

entirely from zero). Moreover, retaining a classic activation 

function aids convergence when data are scarce or gradients 

are unstable. 
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The spline branch is constructed as a linear combination 

of a set of B-spline basis functions. This component serves as 

a critical source of KAN's learnability and expressiveness. 

The reasons for choosing B-spline functions are as follows: 

(1) Each basis function iB  is nonzero only over a small 

interval, which means that updating the coefficient ic   

affects only a local region of the activation function.  

(2) Cubic splines ensure that ( )x  is at least twice 

continuously differentiable, which facilitates subsequent 

analysis involving second-order derivatives of the model. 

(3) The trade-off between fitting capacity and overfitting 

risk can be controlled simply by adjusting the number of 

knots—more knots allow for greater flexibility, but also 

increase the risk of overfitting. 
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The coefficient w serves as a convenient means to 

control the overall amplitude of the activation function. 

Although, in theory, w could be absorbed into the coefficients 

of ( )b x  and spline( )x , a separate scaling factor is still 

retained intentionally. 

In summary, this residual-style activation preserves the 

classical SiLU branch to ensure training stability, while the 

learnable B-spline branch endows the model with high 

expressiveness, enabling the precise approximation of any 

smooth one-dimensional function. Furthermore, after network 

training is completed, it is possible to visualize and analyze 

the spline coefficients, thereby enhancing the interpretability 

of the internal nonlinear transformations. This serves as the 

primary source of KAN's interpretability. 

3.4. KAN in renewable energy forecasting 

In existing KAN-related research, the targeted 

application domains primarily include satellite traffic, 

transportation flow, and weather forecasting. However, 

through an extensive review of the relevant literature, we 

have not found any studies that apply KAN to the task of 



 

 

renewable energy forecasting. This indicates that the 

application of KAN in this field remains in an exploratory 

stage and carries significant research value. Compared to 

traditional power generation methods and other types of time 

series data, renewable energy generation exhibits higher 

degrees of uncertainty, randomness, and a certain level of 

periodicity. These characteristics suggest that the 

effectiveness of KAN in this context requires empirical 

validation. 

It is also worth noting that, although energy forecasting 

can be categorized as a time series forecasting task, existing 

research [21] indicates that KAN does not necessarily 

achieve optimal performance across all tasks. Therefore, it is 

essential to explore and design suitable KAN architectures 

that can effectively address the specific challenges of 

renewable energy forecasting. The detailed network 

architecture we adopt will be elaborated in Section 4. 

4. Experiments 

The dataset used in this study originates from a 

confidential real-world dataset in Shandong Province, China. 

It comprises hourly time-series data from 2021 to 2023, 

including wind turbine installed capacity, wind power 

generation, photovoltaic installed capacity, photovoltaic 

power generation, and corresponding meteorological data 

(including temperature, humidity, total precipitation, solar 

irradiance, and wind speed at 10 meters). Although this 

dataset is not publicly available, it is regularly maintained 

and inspected by dedicated personnel, contains no missing 

values, and can be reasonably assumed to be free from 

anomalies. Therefore, it is of high quality and well-suited for 

validating the performance of KAN in the context of 

renewable energy generation forecasting. The dataset is 

partitioned into three subsets: training set, validation set, and 

test set, with respective proportions of 60%, 20%, and 20%. 

To enhance computational efficiency, data normalization was 

also applied prior to training. 

  
(a) PV dataset (b) Wind dataset 

Figure 2. Correlation plot of the dataset 
Before initiating model training, and considering that the 

dataset used is not publicly available, this study conducted a 

correlation analysis separately on the photovoltaic and wind 

power components of the dataset along with their associated 

variables. The results, as illustrated in Figure 2, indicate that 

wind speed is the primary influencing factor for wind power 

generation, while solar irradiance is the dominant factor for 

photovoltaic power generation. These findings are consistent 

with established physical principles, further confirming the 

reliability and high quality of the dataset. 

 
(a) KAN in photovoltaic power forecasting 

 
(b) KAN in wind power forecasting 

Figure 3. Loss function curve during the training process 

In this experiment, the baseline models selected for 

comparison are the Multilayer Perceptron (MLP) and Long 

Short-Term Memory (LSTM) networks. On one hand, MLP 

is a key baseline used by the original authors of KAN, and on 

the other hand, LSTM has been widely adopted and 

well-established in the field of energy forecasting. Therefore, 

using these two models as benchmarks to evaluate the 

performance of KAN is both justified and reasonable. Each 

model is tested under different forecasting horizons to 

simulate varying real-world application needs, including 

24-step, 96-step, 168-step, and 336-step predictions. The loss 

function is set to mean square error (MSE). After training, the 

models are evaluated on the test set, and both the Mean 

Absolute Error (MAE) and MSE are calculated for 

performance assessment. 

TABLE 1. Results summary 

Dataset Step Mse(×10³) Mae（×10²） 

  KAN LSTM MLP KAN LSTM MLP 

Wind 

24 2.0 2.8 7.1 2.9 3.1 5.6 

96 4.8 5.4 11.1 4.1 4.8 6.9 

168 10.3 11.1 30.1 6.7 6.9 10.7 

336 24.9 23.1 44.1 7.7 7.0 13.9 

PV 

24 1.5 2.3 6.2 2.6 2.8 5.1 

96 4.3 4.9 10.6 3.4 3.9 6.4 

168 8.9 9.4 22.6 5.2 5.7 9.7 

336 15.3 15.6 43.8 6.4 6.6 12.1 



 

 

Model Configuration Used in the Experiment: For the 

KAN network, we adopted a structure with four hidden layers, 

where the input and output dimensions vary depending on the 

specific forecasting horizon. The MLP model, similar to 

KAN, also consists of four layers and uses the ReLU function 

as its activation function. The LSTM model was configured 

with two hidden layers. Through preliminary experiments, we 

observed that when trained with the Adam optimizer, the 

networks’ loss function (MSE) generally ceased to decrease 

after 20 epochs. Consequently, the final experiments were 

conducted using 20 training epochs. 

 
(a) Photovoltaic power forecasting 

 
(b) Wind power forecasting 

Figure 4. Visualization of prediction performance on the test set 

The training process of KAN is shown in Figure 3. Once 

the model converged, its performance was evaluated on the 

test set. The predictive performance comparison of the 

models on the test set is illustrated in Figure 4 (To safeguard 

the sensitivity of the dataset, all data presented in the figure 

have been normalized). It should be noted that due to the 

large number of data samples in the test set, only a portion of 

the 96-step samples were selected for visualization to 

facilitate clearer comparison. A comprehensive comparison of 

the global prediction performance of each model across 

different time horizons and for both energy types is 

summarized in Table 1. It is evident that KAN consistently 

achieves the best performance in most scenarios. Specifically, 

for the 96-step and 168-step wind power forecasting tasks, 

KAN outperformed the second-best model, LSTM, with 

reductions in MSE of 11.1% and 7.2%, respectively. For 

photovoltaic power forecasting at certain time steps, KAN 

achieved MSE reductions of 12.2% and 5.3% compared to 

LSTM. In the 336-step forecasting task, KAN's performance 

was approximately on par with that of LSTM. An additional 

noteworthy observation is that all models performed slightly 

better on photovoltaic power forecasting than on wind power 

forecasting. This can be attributed partly to the higher 

periodicity of photovoltaic generation, and partly to the 

significantly greater uncertainty inherent in wind power 

generation. Taken together, these results indicate that KAN 

not only delivers strong predictive performance in the field of 

energy forecasting but also retains its advantage of 

interpretability. 

5. Conclusions 

In this study, KAN has been successfully introduced into 

the task of renewable energy forecasting, and its strong 

performance has been demonstrated. Based on a 

comprehensive review of existing research, we first 

established the feasibility of our approach. Subsequently, 

using real-world wind and photovoltaic power generation 

datasets, we conducted comparisons with MLP and LSTM 

models, clearly validating the superior performance of KAN 

in energy forecasting tasks. Currently, the effectiveness of 

KAN in time series applications is a topic of active 

discussion, with numerous promising studies emerging. The 

results presented in this work further support the potential of 

KAN as a valuable tool for time series forecasting. 
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