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Abstract—Analyzing vulnerabilities in software sup-
ply chains is critical for mitigating security risks. The
Software Bill of Materials (SBOM) provides transparency
by listing all components and dependencies. Additional
sources like the National Vulnerability Database (NVD),
Open Web Application Security Project (OWASP), and
the Common Vulnerabilities and Exposures (CVE) sys-
tem enhance vulnerability tracking. However, relying on
a single source leads to incomplete analyses, as vul-
nerabilities in dependencies may still pose threats even
when the primary software appears secure. Therefore, we
require a comprehensive process to provide information
on dependency vulnerability and an understanding of
general software vulnerabilities.

To address the above-mentioned problems, we intro-
duce SOMVE (SbOM and cVE), a process based on Ma-
chine Learning (ML) model to integrate SBOM and CVE.
This integration provides comprehensive vulnerability
information, which is not available by SBOM or CVE
individually otherwise. As such SBOM provides 5 metrics
and CVE contains 21 metrics. Therefore, we identify and
extract the matching CVIDs that are common between
both datasets. The Random Forest (RF) model used in
SOMVE traces the vulnerabilities (using CVIDs) missed
by focusing exclusively on the SBOM data. Specifically,
SOMVE includes key details such as vulnerability scores,
impacts, descriptions, and assessments. A rigorous exper-
iment on SOMVE shows 97% accuracy in mapping the
CVE IDs from both sources. Finally, SOMVE generates a
consolidated JSON report with 11 metrics that highlight
the importance of comprehensive vulnerability analysis
to secure software supply chains.

Index Terms—Software Bill of Materials (SBOM),
Vulnerability Analysis, Common Vulnerabilities, Random
Forest Model.

I. Introduction

Managing complex software systems and address-
ing vulnerabilities is the most challenging task for
security in software supply chain systems. The de-
pendency on third-party libraries and open-source
components often introduces hidden security risks.
Moreover, the interconnected nature of these com-
ponents complicates manual vulnerability tracking
across software stacks. Thus, effective methods are
needed to detect and mitigate vulnerabilities to pre-
vent exploitation [1]. The Software Bill of Materials
(SBOM) and Common Vulnerabilities and Exposures

(CVE) offer detailed insights into components and
their associated risks. In contrast to NVD and
OWASP, SBOM ensures transparency in dependen-
cies, whereas CVE provides precise vulnerability
tracking. By combining these two sources, a com-
bined analysis that covers more gaps than is possible
with other sources alone. We detail SBOM and
CVE’s importance in the background work I-A and
outline the paper’s contribution and organization in
the subsequent subsections.

A. Background

The SBOM serves as a fundamental tool to en-
hance software supply chain security. This providess
a comprehensive inventory of all software compo-
nents used in a product and offers a clear view of its
dependencies [2]. This transformation enables the or-
ganization to monitor and identify vulnerabilities by
linking SBOM data with vulnerability data. Despite
their importance, SBOMs face several limitations,
such as inconsistent formats, difficulty identifying
components, and dependency resolution issues, re-
sulting in incomplete and inaccurate SBOMSs that
reduce their effectiveness in ensuring security [3].
Advanced techniques with integrated models enhance
vulnerability detection by analyzing relationships
between software components and uncovering hid-
den vulnerabilities. These approaches provide deeper
insight into the risks associated with dependencies.
Integrating SBOM generation into pipelines enables
continuous monitoring and updates, ensuring proac-
tive security [4]. However, to fully realize the poten-
tial of SBOMs in securing software supply chains, it is
essential to address their inherent limitations, such as
format inconsistencies and challenges in dependency
resolution. Due to these issues, SBOMs often fail to
provide complete and accurate insights into software
vulnerabilities. A more structured and automated
approach is required to overcome these challenges.
With the integration of SBOMs with vulnerability
databases, organizations can identify and mitigate
security risks more efficiently and more precisely, en-



abling them to address potential threats. Addressing
these limitations and providing a consolidated report
to identify the vulnerabilities is the main aim of our
study.

B. Contribution

This study integrates SBOM with CVE metadata
to improve vulnerability detection in software supply
chains. Its major contributions are given below.

e SBOM-CVE Integration The combination
of SBOM with CVE  metadata is
achieved by matching CVE IDs using the
RandomForestalgorithm. SBOM contributes
four key metrics: Severity, Score, Method, and
Vector, while CVE not only supports these
four but also provides seven additional metrics.
This combined approach significantly enhances
the detection and analysis of vulnerabilities
and addresses these gaps that would remain
undetected by relying on either SBOM or CVE
independently.

o Vulnerability Mapping Combining SBOM and
CVE metrics into a consolidated JSON file
enables vulnerability detection by linking com-
ponent dependencies with specific threat data.
This approach improves the accuracy of threat
identification, reduces false positives, and accel-
erates response times. In the future, such an
integration will improve over automated security
assessments and continuous vulnerability mon-
itoring, required for real-time threat manage-
ment in evolving software ecosystems.

C. Paper organization

The detailed structure of this paper is organized as
follows. Section II provides a comprehensive review
of the relevant literature, highlighting the latest
models and methodologies that leverage SBOMs
for vulnerability analysis. Section I-B highlights the
unique contributions of our work, emphasizing its
novelty and significance in addressing the identified
challenges. Section III outlines the proposed method-
ology, encompassing dataset selection, data prepro-
cessing, and the implementation of machine learning
models. Furthermore, it describes the experimental
setup and evaluation criteria. Section IV presents the
experimental results, offering a comparative analysis
of various experiments conducted. Section V high-
lights the key findings and provides a comparison
with existing studies. Finally, Section VI explores
potential directions for future research aimed at
improving security measures and enhancing vulner-
ability detection.

II. Literature Review

The Software Bill of Materials strengthens soft-
ware supply chain security by providing a detailed
inventory of components and dependencies essen-
tial to software creation. However, sharing SBOMs
presents several challenges, including the risk of data
tampering and the hesitation of software providers
to fully disclose detailed information. These chal-
lenges limit the broader adoption and effective use
of SBOMs, underscoring the need for more secure
and adaptable sharing mechanisms. Some of the
latest studies having an impact on SBOM data, and
integrated with machine learning models to improve
security are discussed below:

Recent research offers a diverse look at SBOM’s
role in securing software supply chains and han-
dling the challenges right from adoption to inno-
vation across various contexts. Axelsson et al. [5]
reviewed SBOM adoption in open-source software,
while Adewumi et al. [6] examined quality assessment
models to refine software development approaches.
Camp ’s [7] findings support SBOM as a means to
strengthen both supply chain security and compo-
nent tracking. In a novel approach by Xia et al. [8].
Extended SBOM to Al systems with a blockchain-
enabled ”Artificial Intelligence Bill of Materials”
(AIBOM) a framework for secure sharing. Ding et
al. [9] proposed an enterprise-focused SBOM gener-
ation method to improve data precision, and Kemp-
painen [10] underscored practical considerations in
the selection of SBOM. Furthermore, Chaora et al.
and [11] emphasized SBOM’s impact on risk manage-
ment across industrial sectors. Additionally, Harer
et al. [12]. Added a proactive layer to software secu-
rity by introducing a machine-learning approach to
automate vulnerability discovery. Collectively, these
studies highlight SBOM’s vital role in protecting
software ecosystems and its expanding applications.
The methods used by all of the models listed above
to analyze SBOM data are similar. Yet, every model
has its own set of drawbacks and provides distinct
insights. Table I describes the gaps found in each
model.

ITI. SOMVE-Methodology

In this paper, we propose a model to enhance
vulnerability management by integrating data from
SBOM files with CVE records from CVE.org [13].
Our model utilizes Random Forest a ML algorithm,
to cross-reference and analyze these datasets based
on CVID. The detailed procedure is given in Figure 1.

Model Workflow: The SOMVE provides a struc-
tured approach, as shown in Figure 1, to integrate
and analyze data from SBOM files and CVE records



TABLE I
Findings and Gaps in Existing SBOM Studies

Reference (Citation)

Findings and Gaps

Axelsson et al. [5]

Studied SBOM adoption in open-source software but lacked focus on proprietary ecosystems
and secure sharing mechanisms.

Adewumi et al. [6]

Proposed quality models for software development but did not address SBOM quality’s
impact on vulnerability analysis.

Camp [7] Focused on SBOM for supply chain security but lacked real-time vulnerability tracking in
dynamic environments.

Xia et al. [8] Introduced AIBOM using blockchain for AI systems but missed broader applicability to
general software ecosystems.

Ding et al. [9] Focused on precise SBOM generation for enterprises but did not consider scalability or

adaptability in diverse supply chains.

Kemppainen [10]

Discussed SBOM tool selection but ignored challenges in enterprise-wide integration.

Chaora et al. [11]

Highlighted SBOM in industrial risk management but overlooked cross-sector integration
and scalability.

Harer et al. [12]

Used ML for vulnerability detection but relied on static analysis and lacked SBOM integration

or real-time updates.
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Fig. 1. Working procedure of the SOMVE

Random forest
to match the CV-ID's from both
databases

for improved vulnerability management. The process
starts with loading the required data from both
sources, followed by extracting and cross-referencing
CVE identifiers (CV-IDs) using a Random Forest al-
gorithm. This approach helps to identify the vulner-
abilities linked to specific software components with
consolidated information generated. The key stages
of the model are explained below: Loading Data: We
start by loading the SBOM file and the corresponding
CVE data from CVE.org [13]. Extracting CV-IDs:
From both datasets, we extract CVE identifiers (CV-
IDs). These IDs are unique references to specific vul-
nerabilities. Matching CV-IDs Using Random Forest:
Our model uses a Random Forest algorithm to
compare and match the extracted CV-IDs from the
SBOM and CVE data. This step ensures the accu-
rate identification of vulnerabilities associated with
software components. Handling Results: If a match is
found, we proceed to extract relevant metrics from
both the SBOM and CVE data, such as severity
scores, impact metrics, and remediation steps. These
metrics are then compiled into a consolidated JSON
file, providing a comprehensive view of the identified

vulnerabilities. Iterative Process: In case no match
is found, the model iterates to process the next
record. This ensures the thorough analysis of all
entries in the datasets. Output:The final output is a
consolidated JSON file that integrates key insights
from both data sources. This file aids in decision-
making processes by providing detailed vulnerability
metrics and recommendations.

A. Dataset

To address the problems discussed in the literature
review Section II, we introduce SOMVE (SbOM and
cVE), a ML based process to integrate SBOM and
CVE. The primary goal of this study is to integrate
the SBOM data [14] with the CVE IDs available
in the CVE dataset [13] and generate a consoli-
dated report to track vulnerabilities. SBOM files
provide detailed information, including the name,
version, licensing details, supplier information, and a
dependency graph of each component. Additionally,
SBOMs include features such as checksum and hash
values to verify the integrity of components, along
with metadata like build environments and times-
tamps. In this study, we extracted SBOM files using
publicly available GitHub data sources [14]. The
extracted metrics (5/5 from SBOM) are formatted
into JSON files with selected key metrics listed in Ta-
ble II. Furthermore, we utilized the dataset provided
by cve.org [13], maintained through the CVE List
repository on GitHub. This dataset includes Com-
mon Vulnerabilities and Exposures (CVE) records,
for identifying and analyzing software vulnerabilities.
We have considered 11 metrics out of 21 Provided by
the CVE dataset. Finally, compressed JSON files are
generated and matched with individual CVE(IDs)
and metadata. The additional metrics extracted from
the CVE dataset are projected in Table II.




TABLE II
Metrics available in SBOM and CVE
SBOMFields CVE Fields
CVE-IDs CVE-IDs
Attack-vector Attack-description
Base-score Attack-complexity
Method User-interaction

Confidentiality-impact
Integrity-impact
Privileges required
Vector string

Base-severity

Integrating SBOM data with the CVE records
given in Table II enables risk assessment by linking
the details of the software components (e.g. attack
description, base score, complexity, dependency, and
interaction) with known vulnerabilities (e.g. CVE
IDs, severity metrics, affected products). This inte-
gration provides comprehensive vulnerability infor-
mation, which is not available by SBOM or CVE
individually otherwise. Specifically, SOMVE includes
key details such as vulnerability scores, impacts,
descriptions, and assessments.

B. Data Preprocessing

As part of our preprocessing methodology, we
used python scripts to restructure both datasets,
creating new JSON files that retained only the
required metrics while discarding the repeated ones.
We have considered four key metrics along with the
corresponding CVE IDs provided in the SBOM and
excluded certain metrics from the CVE dataset to
streamline the requirements, as shown in Table 77.

a) Standardization of Objects:: As part of pre-
processing, key objects are renamed and mapped
to ensure a consistent structure across the dataset.
Examples of these transformations include:

o cve.values.metrics is renamed to metrics.

o containers.adp.metrics is mapped to cveMeta-
data.

e containers.cna.descriptions is standardized as
descriptions.

This renaming and mapping process ensures the
dataset maintains a uniform structure, enabling
seamless analysis and model training.

b) Final data structure:: After preprocessing,
each JSON file contains only three standardized
objects:

o cveMetadata: Contains metadata of the CVE
file.

o Descriptions: Includes detailed descriptions of
the vulnerabilities.

e Metrics: Provides CVE-related metrics, such as
severity scores and impact details.

This streamlined data structure enhances effi-
ciency in analysis and facilitates subsequent model
training and evaluation.

C. Experiment

Algorithm 1 begins by loading the datasets, which
consist of input features from both SBOM and CVE
files and their corresponding target labels CVE-ID
to match the software component from the CVE. We
use Random Forest (RF) a machine learning tech-
nique to create an ensemble structure and aggregate
the extractions of CVE IDs. RF is highly effective
in handling mixed feature types with minimal input
values. In this experiment, we work with various data
types, including numerical values (base score), text
(description), lists (attack vector), and date-time
values (published date), to identify vulnerabilities.
Compared to other Artificial Intelligence models,
RF requires less parameter tuning, and results in
effective interpretations. In our context, we used RF
to simplify the task of matching CVE IDs from the
CVE and SBOM datasets, but not for prediction.
The ability to identify patterns and correlations
between the features of both datasets made RF an
ideal choice for this problem. Resulting in accurate
and reliable matches without extensive training.

We start with significant pre-processing in the
dataset to establish consistency and uniformity
across all records as the first step in Algorithm 1.
The original dataset consists of numerous JSON
files, each containing multiple objects. As the next
step, we scan these JSON files and extract the three
essential objects: cveMetadata, descriptions, and
metrics. These objects are critical as they provide the
necessary information for further analysis. During
this processing, we systematically scan each JSON
file to locate the sub-objects within cveMetadata, de-
scriptions, and metrics. Once a relevant sub-object is
identified, we extract the entire object. This process
is repeated for all three key objects in the data set. To
ensure uniformity, we standardize the object names
throughout the JSON files. Given that the original
JSON files contain varying structure names, we map
these to their corresponding standardized names.

IV. Results and Findings

The outcome of our experiment is to evaluate
a consolidated JSON file based on the matches
extracted from the CVE IDs in both datasets. This
experiment highlights the importance of preprocess-
ing and standardizing the dataset, and ensures the
model operates efficiently and consistently without
encountering structural discrepancies. Our main aim
is to retrieve relevant data associated with a given



Algorithm 1 CVE and SBOM Consolidation Using
Random Forest
1: Input: CVE Dataset Dcyg, SBOM Dataset
Dspom
Output: Consolidated JSON Report Rjyson
Step 1: Load Datasets
Dcev g < Load dataset from CVE (JSON files)
Dgspom < Load dataset from SBOM
Step 2: Preprocess CVE Dataset
for each JSON file f € Deyp do
Extract essential objects: cveMetadata, de-
scriptions, and metrics.
9:  Map object names to standardized names:

10: cve.values.metrics — metrics
11: containers.adp.metrics — cveMetadata
12: containers.cna.descriptions — descriptions

13:  Retain only the standardized objects in f.
14: end for

15: Step 3: Preprocess SBOM Dataset

16: Diypon ¢ Dspom — Meta-information

17: Fspom < Select top 5 features from Do,
18: Step 4: Run RF for Matching CVE IDs

19: Model < Train RF to match CVE IDs from Dcv%%?gtlf

20: Step 5: Match CV-IDs

21: for id € Doy g do

22:  Match « Model.predict(id, Fsgonr)

23: end for

24: Step 6: Generate JSON Report

25: Ryson < {Matched IDs with relevant features}
26: Step 7: Save Report

27: Save Rjson to the specified path.

CVE ID. By working with standardized objects—
cveMetadata, descriptions, and other metrics to trace
severity. This model achieves 97% accuracy in match-
ing CVE IDs to their corresponding JSON records.
SBOM Dataset and New Values: : Table III
compares the metrics selected from the SBOM
dataset and the new metrics added to the consoli-
dated JSON file after processing with the RF model:
Table III presents a comparative analysis of the
metrics derived from the SBOM dataset and the
refined metrics introduced after processing through
the Random Forest (RF) model, achieving 97%
accuracy in matching CVE-IDs. The CVE dataset
initially contained several redundant or irrelevant
fields, such as Assigner Org ID, Assigner Short Name,
Date published, Date updated, version, Timestamp,
and State. These fields were excluded as they do
not contribute directly to vulnerability analysis.
Additionally, the vulnerabilities field in the SBOM
dataset provided only minimal information, such as
severity ratings, vector, and method, which limited

TABLE III
Consolidated Metrics selected and fields eliminated from
CVE- Dataset

Fields eliminated
Consolidated Metrics

CVE-IDs Assigner Org ID
Attack-vector Assigner Short Name
Base-score Date Published

Attack Description
Base-severity

Attack complexity
User-Interaction
Confidentiality impact
Integrity-impact
Privileges Required
Vector String

Date Updated
State

CVSS Version
Date Reserved
Availability Impact
Scope

Timestamp

the ability to conduct a detailed risk assessment.

To address these gaps, the dataset was enhanced
with critical metrics selected from the CVE dataset.
The selection of 11 metrics as: CVE-IDs, attackVec-
tor, baseScore, baseSeverity, attackDescription, at-
tackComplexity, userInteraction, confidentialitylm-
pact, integritylmpact, privilegesRequired, and vec-
i M hese retained metrics are selected based
on the importance in assessing the severity, impact
over vulnerability analysis. In contrast, fields like
assignerOrglID, assignerShortName, datePublished,
state, CVSS version, scope, timestamp, and others
were excluded due to their administrative or sec-
ondary nature, which added noise without contribut-
ing directly to vulnerability detection.

The consolidated metrics now offer a comprehen-
sive and actionable dataset for machine learning
models, allowing for detailed risk assessments, im-
proved prioritization of vulnerabilities, and informed
mitigation strategies. This refinement ensures that
organizations can achieve better precision and relia-
bility in their vulnerability analysis processes.

V. Comparison

Both datasets considered for this study have re-
dundant and irrelevant metrics, which results in
larger file sizes and slower processing. Tracing the
vulnerability with limited inputs and depending on
a single data source resulted in inconsistent and
hindered structural representation. The consolidated
dataset generated by the RF model in this study
resolves the issues by standardizing and enriching
the data availability, enhancing accuracy and perfor-
mance. We highlight our contribution and introduce
a scalable SBOM generation method using machine
learning to improve precision and coverage across
diverse supply chains compared to existing models
discussed in Table IV.



TABLE IV
Comparison of SBOM Studies with Proposed Model

Reference Findings and Gaps Our Contribution

Axelsson et | Explored SBOM adoption in open-source software, | Open source JSON file to address trust and data

al. [5] which lacks secure sharing methods. integrity issues.

Adewumi et | Quality assessment, lacks in vulnerability analysis. | Additional matrix provided to develop a prediction

al. [6] model.

Camp [7] Focus on supply chain security. Extend inputs to assess the risk.

Xia et al. [8] AIBOM using blockchain, limited to analyze the | Apply blockchain-enabled techniques on SOMVE
ecosystems. to avoid data tampering.

Ding et al. [9] | Focused on enterprise-specific SBOM. Standardized structure to coverage across supply

chains.

the challenges.

Kemppainen [1(] Practical exposure to SBOM, lacks in highlighting

Highlighted the requirements supported with an
integrated solution.

Chaora et | Risk management assessment.

Present a cross-sector framework that is adaptable

al. [11] for any product.
Harer et | Focus on static methods for vulnerability analysis | SOMVE ensure proactive security measures with
al. [12] risk-based metrics.

Existing SBOM studies highlight advancements
but reveal significant gaps. Axelsson et al. [5] ex-
plored SBOM adoption in open-source software but
lacked a framework for secure sharing in proprietary
ecosystems, which our model addresses by ensuring
trust and data integrity by adding additional fields.
Adewumi et al. [6] proposed quality assessment
models but didn’t link SBOM quality to vulnerability
analysis, which we address with an integrated SBOM
quality with CVE dataset, which can be extended
for vulnerability prediction. Camp [7] emphasized
SBOM’s role in supply chain security but overlooked
real-time vulnerability tracking, which our approach
resolves with proactive risk management with addi-
tional information required to train any classification
models and handle real-time vulnerabilities. Xia et
al. [8] proposed AIBOM for Al systems but couldn’t
generalize it to broader ecosystems; Our study can
be extended using blockchain-enabled SBOM sharing
for all software ecosystems. Ding et al. [9] focused
on enterprise SBOM generation but lacked scala-
bility, addressed by our machine learning-driven,
scalable SBOM generation method. Kemppainen [10]
considered SBOM tool selection but ignored inte-
gration challenges in diverse environments, resolved
by our integration framework. Chaora et al. [11]
emphasized SBOM for industrial risk management
but neglected cross-sector applicability. Harer et
al. [12] introduced machine learning for vulnerability
detection but relied on static analysis without real-
time updates or SBOM integration, these gaps are
filled by integrating the security model on our JSON
file for proactive security.

VI. Conclusion and Further Work

The presented study introduces SOMVE, a novel
machine learning-based framework that integrates

SBOM and CVE datasets to enhance software vul-
nerability analysis. Unlike prior models, SOMVE
uses Random Forest to correlate CVE IDs across
sources, generating a unified JSON report with 11
key metrics. This significantly improves vulnerability
traceability and detection accuracy (97%). The con-
solidation addresses gaps left by standalone sources
and enables proactive threat mitigation. In the fu-
ture, we will extend SOMVE with real-time data
feeds and predictive analytics to support dynamic
vulnerability classification and cross-sector security
applications.
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