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Abstract: 
This paper presents a deep transfer learning model for 

assessing the health diagnosis of rotating machinery, employing 
a unique three-channel input. The input is created by fusing a 
time-domain grayscale image with two time-frequency images 
generated from original vibration signals. The approach was 
evaluated on two publicly available datasets, CWRU (A) and 
Mendeley (B), both of which include nine fault types—covering 
normal operation as well as defects in the inner race, outer race, 
and ball components. The VGG19-based model with three-
channel input was constructed, trained, and assessed using four 
key metrics: accuracy, recall, confusion matrix, and precision-
recall (P-R) curve. In experiments involving transfer learning 
between the CWRU (A) and Mendeley (B) datasets, the model 
achieved accuracies of 88.94%, 94.61%, and 96.23% for the 
corresponding configurations. These results indicate that the 
three-channel input configuration, especially when paired with 
an 87.5% overlapping data ratios and regularization, 
significantly outperforms both alternative setups and the 
traditional VGG19 transfer learning model. 
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1. Introduction 

Bearing health is a critical concern in rotating machinery 

analysis, as bearings are particularly susceptible to failures 

under harsh conditions. This fact emphasizes the importance 

of accurate bearing fault diagnosis [1–3]. Diagnostic 

techniques for bearing faults can be grouped into three main 

categories: machine learning, deep learning, and transfer 

learning. For example, W. Zhang et al. [4] proposed a Self-

Supervised Joint Learning (SSJL) method that integrates self-

supervised and supervised learning strategies to effectively 

extract fault features from unlabeled data. Their approach 

converts vibration signals into three-channel images, 

consisting of a time-domain image, a short-wavelet time-

frequency image, and a continuous wavelet transform time-

frequency image, which together enhance feature recognition. 

When tested on two representative motor bearing datasets, the 

SSJL method achieved higher diagnostic accuracy with 

minimal reliance on labeled data, outperforming existing 

alternatives. 
C. H. Wang [5] utilized a deep convolutional neural 

network with single-channel grayscale images as input. 

Transfer learning between CWRU and Mendeley datasets 

showed high accuracy, with VGG19 performing 

exceptionally well. The results demonstrate the model's 

strong adaptability to unfamiliar data. 
M. Ahsan et al. [6] introduced a fault diagnosis technique 

for industrial rotating machinery that utilizes the Short-Time 

Fourier Transform (STFT). Their method involves extracting 

STFT features from both test and reference signals and 

comparing these features using metrics like Euclidean 

distance and cosine similarity, enabling precise fault detection. 

Additionally, the incorporation of variable speed vibration 

data further improves the method's effectiveness. 
R.M. Ahsan et al. [7] introduced a fault diagnosis 

technique for industrial rotating machinery that utilizes the 

Short-Time Fourier Transform (STFT). Their method 

involves extracting STFT features from both test and 

reference signals and comparing these features using metrics 

like Euclidean distance and cosine similarity, enabling precise 

fault detection. Additionally, the incorporation of variable 

speed vibration data further improves the method's 

effectiveness. 
Zewen Li et al. [8] presented a comprehensive review of 

CNNs, covering 1-D, 2-D, and multidimensional 

convolutions. The paper explored CNN history, key models, 

and state-of-the-art advancements, offering practical insights 

on hyper-parameter selection and applications across 

dimensions. It concluded with open challenges and future 

directions to guide further research in the field. 
Junbo Zhou et al. [9] proposed a Whale Gray Wolf 

Optimization Algorithm (WGWOA) to enhance rolling 

bearing fault diagnosis by optimizing Variational Mode 



 

 

Decomposition (VMD) and Support Vector Machine (SVM). 

Tested on the Case Western Reserve University dataset and 

laboratory data, the method achieved up to 100% accuracy, 

outperforming six comparative approaches. The results 

highlight WGWOA's superior optimization and diagnostic 

performance. In 2018, bearing vibration systems were set up 

and data were collected under time-varying rotational speed 

conditions in which the data set are available for further study 
[10,11]. 

Other Health diagnosis of rotating machine using deep 

transfer learning model with double-channel [12,13] and 

triple-channel inputs [12,14] are presented under fixed sliding 

step of 1200 (71% of overlapping data ratios) for data 

extension without data regularization.   
Yi Zhang et al. [15] proposed an innovative approach 

that employs the Time-Reassigned Multi-Synchro Squeezing 

Transform (TMSST) to convert vibration signals into time-

frequency feature maps for CNN-based fault diagnosis. When 

evaluated on the Case Western Reserve University dataset, 

their method achieved a global accuracy of 95.67%, 

outperforming other techniques and demonstrating robust 

fault detection performance under a variety of conditions. 
This paper presents three-Channel Deep Transfer 

Learning Model for Health Diagnosis of Rotating Machinery 

using data regularization and different overlapping data ratios 

of 87.5% (sliding step of 512) and 75% (sliding step of 1024). 

A comparison is also given. 

2. Technical background 

2.1. Short-time Fourier Transform  

The Short-Time Fourier Transform (STFT) is a 

modification of the traditional Fourier Transform. Rather than 

simply yielding a frequency–magnitude plot, STFT divides 

the original signal into smaller segments and applies the Fast 

Fourier Transform (FFT) to each segment individually. This 

process preserves both the temporal characteristics of the 

signal and its frequency information, resulting in a more 

comprehensive depiction. Before carrying out the FFT, a 

suitable window function is chosen—often the Hamming 

window [16]. The mathematical window function expression 

for the Hamming window ω[n] is given in eq. (1) 
 

𝜔[𝑛] = {
0.54 + 0.46 𝑐𝑜𝑠 (2𝜋𝑛

(𝑁 − 1)⁄ ) , 𝑛 = 0,1,2, . . . 𝑁 − 1

0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (1) 

where n is the number of samples in a given frame, and N 

represents the total number of samples in the frame (window 

size). 
After selecting Hamming window as the window 

function, the Discrete Short-Time Fourier Transform of x[n] 

can be obtained by Eq. (2). 
 

𝑆𝑇𝐹𝑇{𝑥[𝑛]}(𝑚, 𝜔) = 𝑋(𝑚, 𝜔) = ∑ 𝑥[𝑛]𝜔[𝑛 − 𝑚]𝑒−𝑖𝜔𝑛

𝑁−1

𝑛=0

 (2) 

where ω[n] represents window function, x[n] represents nth 

discrete signal, m is a discrete number , N is an integer number 

of data size. 

2.2. VGG19 Structure 

VGG19 is a Convolutional Neural Network (CNN) 

developed by the Visual Geometry Group [8][9]. Renowned 

for its straightforward structure, ease of interpretation, and 

simplicity in implementation, it has seen widespread use in 

image classification tasks. Trained on the ImageNet dataset 

which encompasses over 1,000 categories and around one 

million images covering a wide range of real-world objects 

and scenes VGG19 demonstrates strong generalization 

capabilities when used as a pre-trained model. 
The VGG19 architecture consists of 19 layers in total, 

comprising 16 convolutional layers and three fully connected 

layers. A distinctive feature of VGG19 is its approach of 

stacking multiple 3×3 convolutional layers, rather than 

employing larger convolution kernels. This design choice 

increases the network’s depth and enhances its capacity to 

learn fine-grained features. The final three fully connected 

layers handle classification, with the output layer providing 

the resulting predictions. Given its well-structured 

architecture and pre-trained weights, which exhibit robust 

generalization, VGG19 is frequently employed in transfer 

learning scenarios. Practitioners often customize the model by 

modifying its input, removing the original fully connected 

layers, and introducing additional hidden layers or classifiers 

to meet specific needs.   

3. Methodology 

In this study, transfer learning is employed as the 

primary method for examining vibration signals under 

varying rotational speeds and across different datasets. The 

aim is to build a model capable of classifying fault types, 

ultimately achieving fault identification and accelerating the 

training process through transfer learning. The model is fed 

preprocessed data from two publicly available internet 

datasets, and the trained model’s performance in 

distinguishing among fault types is then evaluated. This 

process is divided into two key stages: data preprocessing and 

transfer learning.  



 

 

3.1. Data preprocessing 

Data preprocessing involves handling and transforming 

raw data before applying machine learning or deep learning 

methods, and it is crucial for achieving successful outcomes. 

This process includes steps such as noise filtering, feature 

scaling, dimensionality reduction, and data balancing to 

enhance the original data's utility. In our study, the proposed 

data preprocessing strategy is designed to reduce reliance on 

expert intervention by enhancing the features of vibration 

signals. To accomplish this, one-dimensional vibration 

signals from the time domain was converted into two-

dimensional grayscale and time-frequency images. These 

images are then merged into multi-channel images that serve 

as inputs for both training and testing. Finally, data 

augmentation techniques are applied to increase the dataset 

size too. 

3.2. Sliding sampling and 2D image conversion 

Due to the relatively limited size of the dataset used in 

this study and the desire to extract more features, the first step 

in the two-dimensional data conversion process is to employ 

sliding sampling. The principle of sliding sampling is 

illustrated in Fig.1, where the original signal (left) undergoes 

sliding sampling to produce the two sub-data sequences on 

the right. This method involves extracting subsequences from 

a signal, whether it is continuous or ordered sequentially in 

time. In this process, new data samples are generated by 

sliding a fixed-size window along the original signal and 

extracting the signal from each window. In this experiment, 

there are 12,000 data points per second, resulting in a total of 

120,000 data points for each category. The window size N set 

in this study is 4096 points, meaning that each extracted 

segment consists of 4096 data points. The sliding step is set 

at 512 or 1024 and overlapped data ratio is 87.5% (512/4096) 

or 75% (1024/4096). 

FIGURE 1. Sliding step and overlapped ratio diagram 

After sliding steps with different overlapped ratio, more 

data set can be obtained. The quantity of preprocessed data 

with window size of 4096 and sliding step of s can be 

calculated by eq. (3). 

𝑛𝑎(𝑖) ≈
120000 − 4096

𝑠
+ 1    ;    𝑖 = 0,1, 2, … 9 (3) 

where s is the sliding step, 𝑛𝑎(𝑖) is the sub dataset for each 

faulty category. 
The time-domain and time-frequency domain signals are 

transformed into two-dimensional images using different 

methods. As shown in Fig.2, for the time-domain data, the 

4096 data points are stacked into a 64x64 two-dimensional 

image, where each column represents 64 data points. In the 

case of the time-frequency domain data, each small window 

is transformed into 64x64 two-dimensional image after STFT. 

 

FIGURE 2. 2D time-domain image conversion diagram 

Subsequently, the 2D time-domain images and time-

frequency images are normalized by eq. (4). 

𝑋 = round (255 ×
𝑥 − min (𝑥)

𝑚𝑎𝑥(𝑥) − min (𝑥)
) (4) 

In the final step, one two-dimensional time-domain 

image and two time-frequency images are combined to create 

a three-channel 64x64 image as shown in Fig.3. 

 
FIGURE 3. Three-channel image composition diagram 

3.3. Data augmentation 

Data augmentation is a widely used approach in deep 

learning that involves applying a series of transformations to 

the original data to create an expanded dataset. This 

augmented data can help improve training and enhance the 

robustness of the resulting model. In this study, which centers 

on vibration signal analysis, Gaussian noise was selected for 

augmentation to maintain the signal's integrity while boosting 

the model's noise resistance. Gaussian noise refers to noise 

that follows a Gaussian distribution in the frequency domain. 

The equation for Gaussian noise, f(x), is provided in eq. (5). 



 

 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

(𝑥−𝜇)2

2𝜎2  (5) 

where x is the input signal, μ is the mean, and σ is the standard 

deviation. 

3.4. Model establishment and transfer learning  

In this study, a model based on VGG19 with three 

additional hidden layers and one output layer was built [10, 

11]. The model establishment process can be divided into two 

stages: pre-training and transfer learning. In the pre-training 

stage, the first dataset is split into training, validation, and test 

sets in proportions of 49%, 21%, and 30%, respectively. After 

the model is trained, various performance indicators are 

observed to determine if they meet the criteria.  

4. Experimental result and discussion 

The study utilizes two publicly available open-source 

datasets to validate the proposed methodology. The first 

dataset is Bearing Fault Dataset A from Case Western Reserve 

University (CWRU) [10], and the second is Bearing Fault 

Dataset B from Mendeley [11]. 
In the CWRU dataset, the bearing faults are categorized 

into Inner Race Faults (IRF), Outer Race Faults (ORF), and 

Ball Faults (BF). Each of these fault types is further 

subdivided into three groups based on varying fault depths 

(0.007, 0.014, and 0.021 inches), alongside a Normal (N) 

class, culminating in a total of 10 classes. The experimental 

settings for the rotating machinery in this study are detailed in 

Table 1. 

TABLE 1. Dataset information 

Item Description 

Fault type Normal(N), Inner Race (IR x3), 
Outer Race (OR x3), Ball (B x3) 

Sampling frequency 12 kHz (12,000 samples/sec) 

Sampling time 10 sec 
Total samples 120,000 points (each fault) 

Shaft rotation speed 1797 rpm, 1772 rpm 

Fault category 
0.007inches (BF07, IRF07, ORF07) 
0.014inches (BF14, IRF14, ORF14) 
0.021inches (BF21, IRF21, ORF21) 

Load 0 hp(A), 1 hp(A1) 
 

To match the same number of categories as CWRU for 

transfer learning, the Mendeley dataset includes two classes 

of acceleration inner race faults (I-A), deceleration inner race 

faults (I-B); two classes of acceleration outer race faults (O-

A), deceleration outer race faults (O-B); two classes of 

acceleration ball faults (B-A), deceleration ball faults (B-B), 

and one class of acceleration normal operation (H-C-1). There 

are 10 fault categories in total. Additionally, due to the 

significant difference in sampling frequency between 

Mendeley and CWRU, the sampling frequency of the 

Mendeley dataset was down-sampled from 200,000 Hz to 

12,000 Hz. 

4.1. Preprocessing result 

After preprocessing, the original data is transformed into 
64×64 two-dimensional time-domain and time-frequency 
images, which are mapped to grayscale images ranging from 
0 to 255. In this study, a three-channel image method is used, 
where one 64×64 time-domain image is merged with two 
64×64 time-frequency images to create a three-channel  
image. 

In this experiment, both CWRU and Mendeley used a 
window size of 4096 and a sliding step size of 512 or 1024 
for sliding sampling. As a result, the original data is divided 
into 2270 or 1140 parts through sliding sampling, yielding 
2270 or 1140 2D time-domain images. During the conversion 
to time-frequency images for these 2270 or 1140 parts, each 
part has a window size of 128 and a moving step of 64, 
resulting in 2270 or 1140 time-frequency images. 

4.2. Transfer learning result 

This section presents the transfer learning outcomes 

using different input configurations across the two datasets. 

The single-channel input utilizes one time-frequency image, 

the two-channel input combines one 2D time-domain image 

with one time-frequency image, and the three-channel input 

integrates one 2D time-domain image with two time-

frequency images. The performance of transfer learning with 

these various inputs is then illustrated using a confusion 

matrix and a precision-recall (P-R) curve. 

4.3. Transfer learning from A to A1 

The transfer learning outcomes under varying load 

conditions within the same dataset. The model is initially pre-

trained using the CWRU dataset recorded at a 0 hp load 

(denoted as CWRU(A)). After preprocessing, the original 

dataset is divided into either 2270 or 1140 segments. Gaussian 

noise augmentation—with a mean of 0 and a standard 

deviation of 0.5—is then applied, expanding the dataset to 



 

 

4540 or 2280 segments, covering a total of ten classes. These 

augmented segments are split into training, validation, and 

test sets in the ratios of 49%, 21%, and 30%, respectively.  
The model's performance is evaluated under various 

sliding step sizes and with or without the use of regularization. 

In the training configuration, a batch size of 256 is used, the 

process runs for 200 epochs, and early stopping is set with a 

patience of 10 epochs. For the transfer learning phase, the 

dataset is also taken from CWRU but with a load of 1 hp 

(referred to as CWRU(A1)). Fig.4. shows the corresponding 

precision-recall (P-R) curves.  

 
FIGURE 4. A to A1 P-R curve of different sliding step sliding step (a) 1024 

(b) 1024 + Regularization (c) 512+ Regularization 

4.4. Transfer learning from A to B 

This section examines the transfer learning outcomes 

across different datasets. The pretrained model is built on the 

CWRU dataset captured at a 0 hp load (CWRU(A)), which 

consists of 1940 data points that are partitioned into training, 

validation, and testing sets at roughly 49%, 21%, and 30%, 

respectively. The training configuration uses a batch size of 

256 and runs for 200 epochs with early stopping set to a 

patience of 10 epochs. For the transfer learning phase using 

the Mendeley dataset (B), Gaussian noise—with a mean of 0 

and a standard deviation of 0.1—is applied for data 

augmentation. The resulting dataset, containing either 4540 or 

2280 data points, is split into training, validation, and testing 

sets in the same proportions as CWRU(A). The model's 

performance is evaluated under varying sliding step sizes and 

both with and without regularization. In this phase, the 

training setup also employs a batch size of 256 and 200 

epochs, but with early stopping configured to a patience of 15 

epochs. Fig.5 displays the corresponding precision-recall (P-

R) curves. 

 
FIGURE 5. A to B P-R curve of different sliding step (a) 1024 (b) 1024 + 

Regularization (c) 512+ Regularization 

TABLE 2. Comparison of Transfer Learning Results with Different 

Sliding Steps and Regularization Settings 

sliding step 512 + 
Regularization 1024 1024 + 

Regularization 

Transfer 
learning 
(𝐴

 𝑡𝑜
 𝐴

1 ) 

accuracy 95.81% 93.74% 94.36% 

training 
time 95.11s 20.26s 19.69s 

Transfer 
learning 
(𝐴

 𝑡𝑜
 𝐵

) 

accuracy 96.23% 88.94% 94.61% 

training 
time 129.87s 19.92s 60.55s 

 
The comparison of accuracy and training time in this 

study is shown in Table 2. In transfer learning, the accuracy 

improvement from CWRU (A) to CWRU (A1) with 

regularization and learning rate adjustments is minimal, likely 

because both datasets are from the same source but have 

different rotational speeds. Even without these adjustments, 

the accuracy results are satisfactory. 
However, from the Training and Validation Loss Curve, 

it is evident that overfitting occurs when the sliding step size 

is 1024 without regularization. Therefore, the model performs 

best when the sliding step size is 512 with regularization. For 

CWRU(A) to Mendeley(B), regularization and learning rate 

adjustments slightly increase training time but significantly 

improve accuracy. Comparing sliding step sizes of 512 and 

1024, the smaller step size enhances accuracy but extends 

training time due to increased data samples. 

 

(a) (b)

(c)



 

 

5. Conclusions 

This paper proposes a deep transfer learning model with 

three-channel input for health diagnosis of rotating machinery. 

The input consists of a three-channel image, which is 

composed of a time-domain grayscale image and two time-

frequency images derived from the original time-domain 

signals. Testing was conducted on two similar open-source 

datasets, CWRU (A) and Mendeley (B), which include nine 

fault types based on normal conditions, inner race, outer race, 

and ball defects. Finally, a three-channel VGG19 model was 

constructed, trained, and validated, with a comparison of 

model performance using different sliding step sizes and the 

inclusion or exclusion of regularization. 
In the two scenarios of transfer learning, using a three-

channel input with a sliding step size of 512 (overlapped data 

ratios of 87.5%) and incorporating data regularization showed 

overall better performance in transfers from A to A1 and A to 

B. This improvement is reflected in increased overall 

accuracy and longer training time. 
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