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Abstract:

Point cloud quality assessment (PCQA) is essential for
numerous 3D vision applications.  Existing no-reference
(NR) approaches typically rely on either 3D geometry or
2D texture features alone, limiting their accuracy. To
address these limitations, we propose MMFN-PCQA, a
novel multi-modal fusion network for NR-PCQA. MMFN-
PCQA integrates both 3D geometric structures and 2D
texture information through a dual-branch transformer
architecture. Key innovations include a Local-Feature
Self-Attention (LFSA) module, which enhances fine-grained
local geometric details, and a hybrid U-net Partitioning
Segmentation (UPS) module to effectively capture texture
information from 2D projections. An Adaptive Cross-Modal
(ACMF) integrates these

modalities via multi-head cross-attention and gated residual

Fusion mechanism selectively

aggregation, ensuring robust yet discriminative feature
fusion. Experimental results show that our method achieves
competitive performance compared with state-of-the-art
approaches.Moreover, MMFN-PCQA not only significantly
improves assessment accuracy but also retains a lightweight,
practical architecture suitable for real-world deployment.
Keywords:
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1. Introduction

Point Cloud Quality Assessment (PCQA) is a crucial
research topic in computer vision and multimedia. Its goal
is to objectively evaluate point cloud data quality to guide
subsequent processing, compression, transmission, and ap-
plications. With rapid advances in 3D data acquisition,
point clouds — as the primary 3D data representation —

are widely used in areas such as autonomous driving, vir-
tual reality, and 3D reconstruction [1]. However, during
acquisition, compression, and transmission, point clouds
often suffer geometric deformations, texture distortions,
and noise. These issues degrade data reliability and limit
the effectiveness of point clouds in critical applications.
Consequently, PCQA has become fundamental to ensur-
ing the success of 3D technologies by addressing these
quality issues.

Traditional PCQA methods are generally classified
into Full-Reference (FR), Reduced-Reference (RR), and
No-Reference (NR) categories. FR-PCQA relies on high-
quality reference point clouds, whereas RR-PCQA uses
manually crafted low-resolution reference images for as-
sessment [2]. Although effective in certain scenarios, these
methods require additional computational resources or
high-quality references, limiting their practical adoption.
In contrast, NR-PCQA, which requires no reference data,
has attracted increasing attention due to its greater appli-
cability. Existing NR-PCQA algorithms typically exploit
hand-crafted statistical features from point clouds [3, 4]
or end-to-end neural networks [5], or they derive features
from 2-D projections using hand-engineered descriptors
[6-8] or CNN backbones [9-11]. These single-modality ap-
proaches often fail to exploit the complementary strengths
of point clouds (3-D geometry) and projection images (2-D
texture), resulting in suboptimal performance.

With the rise of multimodal learning, researchers have
started to fuse heterogeneous modalities to obtain more
reliable quality predictions. Recent multimodal PCQA
frameworks demonstrate that combining image textures
with point-cloud geometry can yield a more comprehensive
assessment [12]. Nevertheless, how best to extract, align,
and fuse cross-modal features while keeping the overall
model lightweight remains an open challenge.
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FIGURE 1. MMFN-PCQA Architecture Diagram.

To address current limitations, we propose MMFN-
PCQA, a transformer-based NR-PCQA framework (Fig-
ure. 1). A dual-stream transformer lets point-cloud
and image tokens learn independently, mirroring the hu-
man visual system, while an Adaptive Cross-Modal Fusion
module uses cross-attention to share only the most rel-
evant geometric and image cues. This design preserves
modality-specific learning yet captures rich inter-modal
correlations, yielding highly discriminative quality fea-
tures.

The main contributions of this paper are as follows

e We design a point-cloud encoder enhanced by Local-
Feature Self-Attention, together with an image en-
coder that blends ResNet-50 and U-Net, allowing our
framework to capture fine-grained 3-D geometry and
rich 2-D texture cues in a unified manner.

e We introduce ACMF, which uses multi-head cross-
attention (MCA) and gated residual aggregation to
adaptively integrate the two modalities in an HVS-
inspired manner, balancing modality-specific refine-
ment with effective information exchange.

e Experiment results show that our MMFN-PCQA
achieves state-of-the-art performance on three bench-
marks.

2. Methods

In this section, we present the technical details of our
MMFEN-PCQA framework for point clouds. As illustrated
in Figure. 1, the framework consists of three main com-
ponents: 1) Multi-modal feature extraction; 2) Adaptive
Cross-Modal Fusion; and 3) A loss function for quality
prediction.

2.1 Multi-modal feature extraction

To guarantee a comprehensive assessment, we design
a dual-branch feature-extraction module composed of a
point-cloud encoder 6, for the 3-D modality and an im-
age encoder 0,4 for the 2-D modality. Relying on a sin-
gle modality would miss critical cues; therefore, our ap-
proach leverages 3-D structural information together with
2-D texture details for more robust evaluation.

Point Cloud Feature Extraction. In the 3-D branch,
each point cloud is first down-sampled by Farthest
Point Sampling (FPS) to obtain Ns representative points
{5m}ﬁ5=1. For every sampled point, the N, nearest neigh-
bors are retrieved using the k-Nearest-Neighbors (KNN)
algorithm [12], forming a set of local sub-models that are
fed into a PointNet++-based [13] encoder 6, to produce
patch-level features FP¢:

(1)



e = {0,0(SP) ) (2)

where SP¢ is the set of point-cloud sub-models, KNN ()
denotes the k-nearest-neighbor operation, and &,, is the
m-th farthest-sampled point.

Traditional PointNet++ aggregates channel informa-
tion only via max-pooling at the back-end and thus strug-
gles to discriminate fine-grained differences such as sub-
tle noise or deformations. To address this, we introduce
a Local Feature Self-Attention (LFSA) module (see Fig-
ure. 1) that performs channel-wise self-reweighting with
a residual path, thereby suppressing over-smoothing while
preserving local details:

1 X
pe — LFSA | — S Fre

where F'¢ is the quality-aware embedding of the [-th sub-
model S, and FP¢ is the LFSA-enhanced point-cloud
feature before fusion.

Image Feature Extraction. For the 2-D branch,
Ntrames rendered views I; are generated. A pre-trained
ResNet-50 [14] serves as the backbone image encoder 6;,,,4;
Features from each view are extracted and aligned via
global average pooling to yield a global projection descrip-
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where N¢rames is the number of rendered views.

To preserve local texture, we design an U-net Parti-
tioning Segmentation (UPS) module that fuses U-Net [15]
with ResNet-50 to produce block-level representations:

Fimo — UPS(1;),i

local — (5)

oy Nframes
2.2 Adaptive Cross-Modal Fusion

To seamlessly integrate 2-D and 3-D modality, we pro-
pose an Adaptive Cross-Modal Fusion (ACMF) module.
It employs a multi-head cross-attention (MCA) strategy
to enhance global and local image features, followed by
a Gated-Residual-Aggregation (GRA) that further blends
image and point-cloud representations (see Figure.2).

Secifically, MCA enhances local image features F}'™
and global image features Fim lobal, and then inputs them
together with the original local image features and global
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FIGURE 2. ACMF Module.

image features into the Merge module for a more refined
image representation F*"9:

—img —=img

Flor'alaFgloAbal - MCA( Vmg Flmg )

local’ * global

(6)
(7)

Finally, Fim9 and the self-enhanced point-cloud fea-
ture FP¢ are adaptively weighted by the GRA gate and
combined with residual links to produce a high-capacity
quality feature F@:
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where g([-],[-]) is the gating mechanism within the GRA
module; it adaptively adjusts the fusion weight of each
modality channel and, together with the residual links,
strengthens information flow.

2.3 Loss function

Following common practice, we simply use two-fold
fully-connected layers to regress the quality features F@
into predicted quality scores. In our quality assessment
framework, we care not only about the numerical accuracy
of these predictions but also about preserving the correct
relative ordering of samples. Accordingly, our loss func-
tion comprises two components: the Mean Squared Error



(MSE) and a ranking loss. The MSE term encourages the
predicted scores to closely match the ground-truth quality
labels, and is defined as:

n

Lyse = % Z(Qn —q,)? (9)

n=1

where g, is the predicted quality scores, ¢/, is the quality
labels of the point cloud, and n is the size of the mini-
batch.

The ranking loss further helps the model discriminate
between point clouds whose quality labels are similar. To
this end, we adopt the differentiable ranking function from
[16] to approximate the ranking loss:

Lig™* = max (0, lg; — ¢;] — e(ai 45) - (4; — &)
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(10)

where 7 and j are the corresponding indexes for two point
clouds in a mini-batch. Subsequently, the rank loss can be

derived as:
1 n n
Z Z k
Lrunk = ﬁ L:_;ln

i=1 j=1

(11)

Then the loss function can be calculated as the
weighted sum of MSE loss and rank loss:
Loss = M Lysg + MoLyank (12)
where A1 and Ay are used to control the proportion of the
MSE loss and the rank loss.

3 Experiment

3.1 Database preparation

To validate the effectiveness of the proposed MMFN-
PCQA, we conduct experiments on three public
benchmarks-SJTU-PCQA [17], WPC [18], and LS-PCQA
[5]. SJTU-PCQA comprises nine pristine point clouds,
each degraded by seven distortion types at six severity
levels, producing 378 distorted samples. WPC contains 20
reference point clouds and 740 distorted counterparts gen-
erated with four kinds of artifacts. LS-PCQA providing
24024 distorted point clouds derived from 104 references
and synthesized with 33 distinct distortion types.

3.2 Implementation details

The Adam optimizer is utilized with weight decay le-4,
the initial learning rate is set as 5e-5, and the batch size
is set as 4. The model is trained for 50 epochs by default.
Specifically, We set the point cloud sub-model size N, as
2048, set the number of sub-models N5 = 6, and set the
number of image projections Ngames = 6.

The projected images with the resolution of
1920%x1080x 3 are randomly cropped into image patches
at the resolution of 224x224x3 as the inputs (the white
background is removed from the projected images).

The multi-head attention module employs 8 heads and
the feed-forward dimension is set as 2048. The weights A;
and Ay for Ly;gg and L,qnk are both set as 1.

3.3 Competitors and evaluation criteria

For the sake of comprehensively investigating the pre-
diction performance and overall result of MMFEN-PCQA,
14 state-of the-art quality assessment methods are selected
for comparison, including 8 FR-PCQA methods and 6 NR-
PCQA methods.

The FR-PCQA methods include MSEp2point (MSE-
p2po) [9], Hausdorfip2point (HD-p2po) [9], MSE-
p2plane (MSE-p2pl) [20], Hausdorff-p2plane (HD-p2pl)
[20],PSNR-yuv [19], PCQM [9], GraphSIM [7], and
PointSSIM [8].

NRPCQA methods include IT-pcqa [21], ResSCNN [5],
GDBF [22], GPA-Net [23], TCM [24] and DisPA [25].

To evaluate how faithfully our metric reflects human
judgments, we report the Spearman rank-order correla-
tion coefficient (SROCC), Pearson linear correlation coeffi-
cient (PLCC), and root-mean-square error (RMSE). Each
database is partitioned by content, meaning that folds
never share the same reference point clouds. We follow
the K-fold cross-validation protocol from [12], averaging
the results to reduce randomness. As summarized in Ta-
ble 1, MMFN-PCQA achieves the best performance on all
three benchmarks, consistently outperforming competing
NR-PCQA methods.

3.4 Ablation study

To validate the effectiveness of each component of our
method, we present the ablation study results as follows.
In the case of w/o ACMF, we simply integrate the fea-
tures from both modalities via concatenation. For the



TABLE 1. Performance comparison with state-of-the-art approaches on the LS-PCQA, SJTU-PCQA, and
WPC-PCQA databases. P and | stand for the point cloud and image modalities respectively. Best in red

and second in blue.

Ref ' Modal ' Methods LS-PCQA SJTU-PCQA WPC-PCQA
| | SRCC1T PLCCT RMSE/J] | SRCCT PLCCT RMSE]| | SRCCT PLCCT RMSE |
\ P I MSE-p2pl 0.287 0.444 0.745 0.6277 0.594 2.2815 0.3281 0.2695 22.8226
: P : HD-p2pl 0.269 0.401 0.762 0.6441 0.6874 2.1255 0.2827 0.2753 21.9893
| I ; PointSSIM 0.3155 0.5346 0.7564 0.6867 0.7136 1.7001 0.4542 0.4667 20.2733
FR 1 P I HD-p2po 0.269 0.403 0.761 0.7157 0.7753 1.4475 0.2786 0.3972 20.899
: P : MSE-p2po 0.325 0.528 1.58 0.7294 0.8123 1.3613 0.4558 0.4852 19.8943
| P  PSNR-yuv 0.4876 0.507 0.6341 0.7950 0.817 1.3151 0.4493 0.5304 19.3119
[ P  PCQM 0.3911 0.4044 0.7527 0.8644 0.8853 1.0862 0.7434 0.7499 15.1639
| P! GraphSIM | 0332 _ 0355 _ 0778 | 0.8783  0.8449 10321 | 05831 _0.6163 _ 17.1939
| 1  IT-pcqa 0.2611 0.3319 1.1484 0.3654 0.3952 2.8096 0.2866 0.3 22.866
[ P I ResSCNN 0.4785 0.4349 1.1082 0.4446 0.4087 2.7915 0.4832 0.4956 18.7378
: P+I : GLDBF - - - 0.85 0.873 1.482 0.775 0.792 11.459
NR , P  GPA-Net 0.602 0.628 - 0.875 0.886 - 0.758 0.769 -
[ P I TCDM 0.408 0.433 0.75 0.91 0.93 0.891 0.804 0.807 13.525
: P+I : MM-PCQA 0.581 0.597 1.89 0.876 0.898 1.09 0.761 0.774 14.9
| 1 , DisPA 0.631 0.625 1.6 0.919 0.908 0.89 0.79 0.788 13
I P+I 1 ours 0.6877 0.7013 0.5708 0.9047 0.9319 0.8548 0.8165 0.8124 13.1788

TABLE 2. Ablations on WPC-PCQA database.

No: 61471229 and Grant No:62001115), the Guangdong
Basic and Applied Basic Research Foundation (Grant No:

Best in red. 2023A1515140111, Grant No: 2019A1515010789, Grant
No: 2021A1515012289 and Grant No: 2019A1515110136
_ Modal _ SRCC 1 | PLCC T | RMSE ‘Lﬂnd the Jihua Laboratory Scientific Project (Grant No):
w/o image modality 0.4575 0.4954 19’7359X210101UZ210).
w/o point cloud modality | 0.7328 0.7344 15.26
w/o ACMF 0.773 0.7758 14.2499
MMFN-PCQA (ours) | 0.8165 | 0.8124 | 13.1788References
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fusion strategy.
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