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Abstract:
Federated Learning (FL) is an emerging distributed ma-

chine learning paradigm, where the collaborative training of
a model involves dynamic participation of devices to achieve
broad objectives. In contrast, classical machine learning (ML)
typically requires data to be located on-premises for train-
ing, whereas FL leverages numerous user devices to train a
shared global model without the need to share private data.
Current robotic manipulation tasks are constrained by the
individual capabilities and speed of robots due to limited low-
latency computing resources. Consequently, the concept of
cloud robotics has emerged, allowing robotic applications to
harness the flexibility and reliability of computing resources,
effectively alleviating their computational demands across the
cloud-edge continuum. Undoubtedly, within this distributed
computing context, as exemplified in cloud robotic manip-
ulation scenarios, FL offers manifold advantages while also
presenting several challenges and opportunities. In this paper,
we present fundamental concepts of FL and their connection
to cloud robotic manipulation. Additionally, we envision the
opportunities and challenges associated with realizing efficient
and reliable cloud robotic manipulation at scale through FL,
where researchers adopt to design and verify FL models in
either centralized or decentralized settings.

I. Introduction

The increasing deployment of robots in various domains
has resulted in large volumes of data. Consequently, there
has been a rising need for powerful machine-learning
models that can handle and utilize them. While the
development of distributed machine learning paradigms
has presented a promising venue, the challenges of privacy
and data ownership remained unsolved amidst growing
data privacy regulations [?]. Federated Learning (FL) is

an emerging machine learning paradigm that harnesses
the computational power of user devices and utilizes
distributed data for model training while prioritizing data
privacy. Robotic manipulation is a compelling application
for FL [?], where robots are trained on private data to
get a high-performing personalized model that can help,
for example, elderly home-bound people in different day-
to-day household tasks. As the demand for sophisticated
models trained on vast and diverse datasets has grown
amidst privacy concerns, federated learning (FL) [?] has
evolved as a training methodology for machine learning
applications. In its simplest form, an FL setup consists
of a server and n participating devices, where the server
initializes a global model and shares it with participating
devices. Each participating device trains the model with
its local data and sends it back to the server, where the
server makes an aggregation in each round and repeats
this for the next round until the model converges.

Robotics has risen as a transformative multidisci-
plinary field that revolves around studying intelligent
machines’ design, creation, and operation. These intel-
ligent machines (robots) are capable of performing tasks
autonomously and can usually sense, plan, and act using,
for example, manipulation. In order to plan in complex
environments, robots require adequate computational
capabilities, and to keep robots agile, computation or
storage can be offloaded to the cloud (cloud robotics)
[?]. Cloud integration offers a scalable, collaborative, and
maintainable infrastructure for deploying robotic fleets
(groups of robots aiming to do similar tasks). While
cloud offloading seems binary, the robots can decide to
plan smaller tasks locally to reduce latency and offload
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FIGURE 1. Centralized vs. federated cloud robotic setups.

when greater computational capability is required. The
rising deployment of robotic systems can be attributed
to their ability to manipulate complex and unpredictable
environments. Manipulation is often defined as “making
an intentional change to the environment”[?]. The in-
tentional change can be made using pushing, grasping,
picking, rearranging, etc. Robots need to manipulate their
surroundings in dynamic environments. In order to excel
at these manipulation tasks, robots need large volumes
of manipulation task-specific data, which is costly and
time-consuming for a single robot to collect and enables
massive-scale training.

Federated learning is key and has the potential to
address the challenges in cloud robotics and robotic ma-
nipulation. Several inherent challenges exist in FL itself,
such as statistical heterogeneity, system heterogeneity,
communication, privacy, and security. However, a few of
them are important to explore when it comes to training
a large number of robots. Additionally, adaptability
becomes increasingly important when interacting with
the environment, and FL-based collaboration can enhance
robots’ capability. Decentralized learning ensures that
robots adapt to diverse scenarios while keeping their data
private. Additionally, as robots are generally deployed in
fleets [?], FL can enable collaborative decision-making by
utilizing each robot’s individual insights and experiences
to improve the fleet’s overall perception and manipulation
capabilities without raw data transfer.

Despite the fact that the application of ML has been ex-
tensively studied in robotic manipulation, FL for robotic
systems has been studied at a very surface level. Applying
federated learning to robotics and cloud robotics brings up
unique and unforeseen challenges. As per our knowledge,
no existing literature studies the aforementioned fusion
and discusses the prevalent challenges and possible solu-
tions. We believe that the intersection of FL and cloud
robotic manipulation would pave the way for trustful,
private, robust, scalable, and efficient robotic systems
and could speed up the deployment of robotic fleets
in various application domains. This work outlines the
existing literature in the intersection of cloud robotics and
federated learning, alongside outlining existing challenges.
Further, this work provides opportunities and future
research directions to improve the existing landscape of
federated learning enabled cloud robotic applications.

II. Federated Learning

As the need for large training datasets in machine learn-
ing (ML) applications grew, distributed ML paradigms
were increasingly applied to distribute the training over
multiple systems while learning a single machine learn-
ing model [?]. Distributed ML algorithms require full
ownership of the data [?], and an improved privacy-
preserving collaborative learning paradigm was required
in the age of increased data privacy regulations. Federated



Learning is a machine learning training paradigm where
the participating devices collaborate to train a joint model
without explicitly sharing their data. The local storage of
data helps FL tackle privacy challenges while enabling
collaborative learning. FL systems can be divided into
centralized FL and decentralized FL systems. Similar to
centralized ML, centralized FL requires a server to coordi-
nate the learning process, while decentralized FL is based
on peer-to-peer communication among the participating
devices.

The centralized FL process can be divided into three
broad sections: i) model initialization, ii) local training,
and iii) server aggregation. In the model initialization
phase, the server initializes a global model that is com-
municated to all or a subset of participating devices. The
device selection in each communication round might help
avoid straggler devices and improve overall fairness. As a
subset of devices is selected, they receive the global model
from the server, train the global model on their local
data for a fixed number of epochs, and send the model
back to the server. The server aggregates the received
models and consequently starts the next iteration. In
the simplest form, federated learning uses FedAvg [?].
In FedAvg, the server calculates a weighted average of
the received models, where the clients’ weights are the
proportion of the total training data they hold. Local
models are aggregated in the server according to equation
1, where ωt represents global model weights at time t and
is calculated as a weighted average of local model weights
for all devices at time t− 1.

ωt =
∑
c∈Cm

nc

N
ωt−1
c (1)

while FedAvg is the simplest aggregation solution in an
FL environment, complex aggregation functions such as
FedProx [?] are increasingly used, as they can alleviate the
intrinsic system heterogeneity of FL environments better.

Federated Learning Approaches: Based on data distri-
bution, FL can be divided into horizontal and vertical
federated learning. Horizontal federated learning (HFL)
is suitable for FL scenarios where the features among
the participating devices’ datasets are the same and the
data instances differ. In vertical federated learning (VFL),
the participating devices hold different features of the
same instances. The devices share the same sample space
but provide different information about each subject. In
VFL, unlike HFL, the devices may not share the model
parameters and only share intermediate results and keep

their local model private [?]. Hybrid approaches can utilize
both setups concurrently.

III. Cloud Robotics – The Intersection of Cloud-Edge
Continuum and Robotics

FIGURE 2. Cloud robotics ecosystem: robots connected to the
Cloud for perception, understanding, reaction, and knowledge
sharing.

In this section, we explore the convergence of cloud
computing and edge computing in what is known as
the Cloud-Edge Continuum, highlighting their combined
potential to establish an extensive network of cloud-
connected robots.

A. The Cloud-Edge Continuum

Cloud computing, since its inception over two decades
ago, has fundamentally reshaped the landscape of in-
formation technology. It has transcended from a novel
concept to a ubiquitous infrastructure for deploying appli-
cations worldwide. A key driver behind cloud computing’s
pervasive adoption lies in its remarkable resource elas-
ticity, which enables organizations to adjust computing
resources in response to demand dynamically, optimizing
efficiency and scalability. More recently, the advancement
of sensor technologies and IoT applications has brought
forth fresh challenges characterized by stringent demands
for low latency and high bandwidth. This has given rise to
a novel distributed computing infrastructure, where com-
puting and storage capabilities are strategically placed
close to the data sources or end-users at the network’s
edge. This transformative paradigm is referred to as Edge
computing [?]. Edge computing provides resources within
edge data centers, often known as “cloudlets”, resembling



a compact cloud infrastructure located in close proximity.
Experimental studies have validated and quantified the
manifold benefits of edge computing [?]. These advantages
encompass substantial improvements in response times
and extended battery life, achieved through the offloading
of computation from mobile devices to nearby servers
instead of the distant cloud. Furthermore, there is a sub-
stantial reduction in the demand for ingress bandwidth
due to the processing of high-data-rate sensor streams at
edge locations close to the data source. Additionally, edge
servers positioned in proximity to end-users can function
as privacy barriers, granting users dynamic and selective
control over the release of sensitive sensor data to the
cloud.

The transition between centralized and decentralized
computing has oscillated over the course of computing his-
tory, mirroring the dynamic demands arising from emerg-
ing applications and their core functional requirements.
Leveraging resources from the combined paradigms of
edge computing and cloud computing, known as the
Cloud-Edge continuum [?], not only enhances availability
and reliability but also facilitates the flexible deployment
of application services while accommodating their multi-
objective requirements.

B. Cloud Robotics

A robotics system consists of numerous programmable
and controller components, each operating both inde-
pendently and cooperatively towards a shared ultimate
objective. To illustrate, consider a robot gripper designed
for use in a factory setting, tasked with picking up
and placing items. This system incorporates a range
of cognitive components, including those powered by
computer vision models that facilitate object recognition
and environmental assessment. Furthermore, it features
motion planning components that analyze and determine
feasible or optimal routes for the robot to navigate from
its initial position to the desired goal state. Another
important component is the generation of maps to create
a comprehensive layout of the workstation. Lastly, a kine-
matics controller is in place to oversee the physical aspects
of the robot, such as its orientation, position, and the
coordination of its arm and fingers, ensuring precise and
efficient control. Each of these components necessitates di-
verse resource allocation capabilities, including computing
power, storage, and network resources, to attain optimal
performance. In this scenario, the previously mentioned
diversity in resource allocation capabilities provided by

the cloud-edge continuum makes it an appealing platform
for deploying the robotics system.

Indeed, the concept of utilizing substantial compu-
tational resources from cloud data centers for robotics
applications was initially introduced over a decade ago,
referred to as cloud robotics [?]. This approach not only
provides robots with access to significant computational
power and extensive data resources but also facilitates
the exchange of collective knowledge and expertise among
robots. Consequently, robots can offload computationally
intensive tasks and rapidly acquire new skills from the
cloud. Figure 2 illustrates a visual representation of the
cloud robotics concept. More recently, the cost-effective
advantages of 3D printing, prototyping, and open-source
robot component designs have opened up opportunities
for conducting large-scale robotics experiments. Conse-
quently, cloud robotics has gained significant attention
in both academic and industrial domains [?], particularly
within the realm of large-scale robotic manipulation. Sev-
eral research endeavors are dedicated to the deployment
of bridge platforms, aimed at unifying the deployment of
robotic applications in a hybrid computing environment
spanning robots, edge computing, and cloud computing.
Notable examples of such initiatives include Rapyuta [?],
FogROS [?], and KubeROS [?]. Moreover, certain ini-
tiatives have embarked on exploring the implications of
large-scale data collection across a variety of robotic
platforms [?]. This underscores the critical importance of
the generation of extensive datasets for real-world robotic
tasks.

In the domain of large-scale cloud robotics, as these
technological revolutions were unfolding, concerns related
to data security and end-user privacy have become
inevitable research focal points. FL stands out as a
promising solution for preserving privacy during edge-
based deep learning. Its inherent strength, as mentioned
earlier, lies in its distributed approach, wherein it learns
from isolated data islands and exclusively shares model
updates. To better appreciate the advantages of FL
in this context, consider a scenario where teleoperated
robots assist with healthcare tasks in a hospital. Here,
ensuring the protection of data security and end-user
privacy becomes paramount. The robot is responsible
for collecting sensitive patient data and relies on remote
cloud-based control. In this scenario, FL enables local
data processing directly on the robot itself, ensuring
that sensitive information remains securely stored on the
device. This approach enables machine learning models



to collaboratively train across multiple robots or facilities
without exposing individual patient data, thereby enhanc-
ing both data security and privacy. Furthermore, the
implementation of secure communication protocols guar-
antees the safe transmission of data between the robot and
the cloud-based control interface. In this comprehensive
manner, FL effectively addresses the challenges associated
with data security and end-user privacy, particularly in
sensitive domains where robots are deployed.

IV. Early Efforts in Leveraging Federated Learning
for Cloud Robotics

The application of FL to robotics and cloud robotics, in
general, has been studied at a superficial level, primarily
due to complexities in these resource-constrained and
dynamic environments. The challenges of data and device
heterogeneity and varying computational capabilities have
limited FL adaptation in such autonomous systems.
Despite the obstacles, FL can potentially mitigate several
issues in cloud robotics. In cloud robotics, where privacy
is of utmost importance, federated learning (FL) enables
local model training by keeping data private on individual
robots. It can additionally foster interoperability between
multiple robots to mitigate heterogeneity. In short, while
FL has limited applications in cloud robotics, it can
emerge as a solution to various challenges in cloud robotic
manipulation. This section focuses on current works that
utilize FL in robotic and cloud robotic systems, as well
as existing FL approaches for these systems.

Given the intrinsic need for robotic systems to compre-
hend and manipulate complex and dynamic environments,
different FL techniques are tailored to specific applica-
tions. Machine learning techniques, including reinforce-
ment learning (RL) and, specifically, deep reinforcement
learning (DRL) [?] strategies, have been adapted in
robotic manipulation applications due to their adaptabil-
ity to unseen environments. Swarm Deep reinforcement
learning (SDRL) [?] employs a decentralized, federated
reinforcement learning (FRL) setup, where the robots
share their local actor-critic models by interacting with
their environment between them to train a shared global
model. To improve the overall security of the system,
SDRL utilizes blockchain. The results indicate faster
model convergence as the number of devices increased.
The peer-to-peer communication in SDRL, while pre-
serving privacy and security, may lead to communication
overload on the network.

FLDDPG [?] has studied FRL for swarm robotics
for collective navigation, pursuing a similar approach to
SDRL, where they collected local navigation data and
trained local actor-critic models before aggregating a
global model. Their experiments conclude that FL-based
system not only overperforms centralized DDPG ap-
proaches; they significantly reduce communication costs
extensively and task execution times. They further argue
that FLDDPG improves robustness and generalization in
a new environment following real-world experiments.

Privacy preserved asynchronous FL (PPAFL) [?] ap-
plies peer-to-peer FL to mobile robotic swarms in 5G and
beyond networks. PPAFL assigns clients to temporary
clusters based on a reputation evaluation algorithm.
Clients communicate their local models within these
virtual clusters to learn a joint model collaboratively.
As soon as the FL phase is terminated, clusters are
resolved. The authors argue that decentralized FL im-
proves resilience and security compared to centralized
approaches, as it eliminates a central point of failure,
alongside distributing communication load over the net-
work. While the inter-cluster communication in PPAFL
can help with task-specific models, the lack of intra-cluster
communication may lead to a lack of generalization.
Additionally, as cluster members increase, peer-to-peer
communication may lead to network overload inside the
virtual cluster.

Further works have incorporated federated transfer
and imitation learning in various robotic applications.
Federated imitation learning [?] proposes a framework
where different participating devices learn different tasks,
and a fusion algorithm in the cloud aggregates the task-
specific knowledge to form a novel model that can be used
in all of the participating scenarios. This can improve
fleet generalization when single robots have access to
single-task data in a multitasking environment. LFRL [?]
proposes an architecture for lifelong or continual learning
in robotic environments. In the proposed architecture, a
single global model 1G is initialized and shared with all
the robots. As soon as a robot shares its local model, it is
aggregated to the global model, and a new global model
2G is formed and shared with all the participating devices.
The model aggregation occurs whenever a participating
robot shares its local model with the server. While this
architecture is communication-intensive, its asynchronous
nature adapts well to cloud robotics architecture. Further-
more, this work provided a starting point for the fusion
of cloud robotics and FL.



Studies incorporating FL into robotic and cloud robotic
systems have been limited, but FL holds immense poten-
tial in the context of cloud robotic systems driven by
its distinct advantages over applying ML algorithms. The
decentralized and privacy-preserved nature of FL couples
well with the collaborative nature of cloud robotics.
Hence, more studies are required to investigate the inter-
section and design more robust and efficient algorithms.

V. Current Research Challenges

While integrating FL and cloud robotics can bring
forth many opportunities, it also introduces a set of
nuanced challenges that need careful contemplation. In
this section, we set forth some of the challenges that can
arise when applying FL to cloud robotics and underline
the significance of addressing these challenges for secure
robotic manipulation.

A. Communication and Latency

While cloud computing plays a pivotal role in augment-
ing the computational capabilities of robotic systems, it
concurrently introduces high communication costs. The
significantly large size of robotic data and the inten-
sive data transfer between robots and the cloud result
in an intensified load on the communication channels,
resulting in latency issues. While the introduction of FL
can substantially reduce the data transfer between the
robots and the cloud, the considerable size of robotic
manipulation networks and the steadily increasing size
of robotic fleets may sustain a higher burden on the
communication channels. The burden on the commu-
nication channel manifests as delays in cloud-offloaded
tasks and may further deteriorate the FL system by
introducing stragglers and subsequent aggregation delays.
Hence, there is a need to develop adaptive FL algorithms
that can efficiently utilize the network bandwidth while
minimizing the communication load to prevent delays for
robotic systems.

B. Heterogeneity

Device and statistical heterogeneity are intrinsic to
all FL applications. Unlike distributed machine learning,
FL applications deal with non-independent and identi-
cally distributed (non-iid) data, e.g., statistical hetero-
geneity. Statistical heterogeneity encompasses both label

and quantity skew among the participating parties [?].
Additionally, the participating parties may differ with
regard to their architecture, computing, and network
capabilities, e.g., device heterogeneity. The presence of
device heterogeneity is intensified as not all participating
parties engage in every training round. Additionally, as
we apply FL to robotics, the inherent heterogeneity in
robotics data with regard to different environments adds a
new layer of complexity. Robots are deployed in different
environments, executing distinct tasks; hence, the data
generated by their sensors vary vastly. A good example
can be cooperative heterogeneous multi-robot systems
(CH-MAS) that function as a robotic fleet while carrying
out different tasks [?].

C. Security and Privacy

Security and privacy are critical for cloud robotic sys-
tems. The integration of the cloud into robotics introduces
new challenges to robotic security, including data breaches
and malicious task execution. In cloud robotic systems,
the robots may use the cloud for storage alongside
communication [?]. Robotic data is sensitive in its nature
and requires security at both storage and communication
levels. For example, a healthcare robot [?] may store
and transmit patients and their diagnosis information
or a home monitor robot may collect inside videos and
images of a house. Additionally, security influences trust
and safety. A malicious task delegation can affect the
safety of the robot and its neighborhood. FL helps reduce
data privacy concerns through local training and keeping
local data on-device, but critical information can still be
revealed to the server or a third-party intruder from the
model parameters. While approaches such as differential
privacy and integral privacy improve data privacy in FL
[?], they often deteriorate model efficiency performance.

While FL can provide data privacy by enabling collabo-
ration with local data storage, other aspects of the system,
including the cloud and communication channels, need
proper security mechanisms to prevent privacy leakage
from the communicated model parameters. Hence, the
intersection requires secure networking, safety by design,
authorization, and verification to retain trust and safety
[?].

D. Limited Resources

Edge and cloud complement each other in addressing
the challenges of limited resources in cloud robotics. In



order to keep the robots mobile and easy to navigate,
on-robot resources are usually limited. Cloud computing
certainly helps to provide the power required for intensive
tasks but with added communication delays. We can
deploy decision-making algorithms to decide on task
execution either locally or on the cloud based on the task
requirements.

E. Energy Efficiency

Energy efficiency poses a significant challenge in the
realm of FL within cloud robotics due to the inherent
limitations of robotic hardware. Robots often rely on
finite power resources, such as batteries, and must operate
in real-time, dynamic environments. FL, which involves
computational tasks and wireless communication with
cloud servers, can be power-intensive, jeopardizing the
robot’s operational longevity and real-time responsive-
ness. Achieving a balance between efficient learning and
preserving energy resources is essential for successful
deployments, demanding innovative algorithms and op-
timizations tailored to the unique energy constraints of
robotic platforms. Some initial research has investigated
the trade-off between learning delay and energy consump-
tion in wireless communication networks [?]. Furthermore,
there have been proposals to reduce the overall energy
consumption of FL processes [?]. While these studies may
focus on different perspectives and applications, they can
serve as foundational insights for integrating FL in the
cloud robotics domain.

VI. Future Research Directions

A. Clustered FL

Robotic fleets carry out different manipulation tasks. A
robotic fleet may consist of robots packaging, organizing,
and carrying boxes. This multi-task nature of robotics can
be utilized with clustered FL [?]. Clustered FL-organized
users execute similar tasks to clusters, where they learn
a global model alongside optimized model parameters
for the users in the same cluster. Robots carrying out
similar tasks may be grouped together to learn a task-
specific cluster-optimized personalized model alongside a
global model. Clustered FL can help robots specialize in a
specific task while being able to perform all tasks allocated
to the fleet. Clustered FL can further help distribute the
communication load, as all the models would not be sent
directly to the server. It can also

B. Integration of LLMs

The research landscape on large language models
(LLMs) has grown immensely over the last few years.
Models such as GPT-4, Roberta, and Bard are ubiquitous
in every aspect of today’s society. LLMs can understand
and generate human-like text; hence, robotics integration
can help robots understand, reason, and manipulate
their surroundings better. They can further enhance
human-robot interaction and streamline communication
between robots with diverse architectures. Additionally,
integrating multi-model LLMs that can understand visual
input alongside textual instructions can enable robots to
understand the task better.

There is a need for further research to develop multi-
model resource-efficient federated LLMs for robotic ma-
nipulation. These multi-model LLMs can also be used as
foundational models for robotic manipulation tasks [?].

C. Responsible FL

As we increasingly rely on ML technologies, concerns
over trustworthiness, interpretability, and fairness in ML
have been raised. Responsible ML discusses developing
fair, accountable, explainable, and trustworthy ML al-
gorithms. Responsible FL extends the idea of trustwor-
thiness to federated environments. With the increasing
number of federated robotic fleets capable of manipula-
tion deployed in complex environments, safety, decision-
making transparency, and ethical considerations become
unavoidable. This requires the development of FL systems
capable of decision traceability, handling biases, and
considerable care toward safety, privacy, and security.

D. FL for interoperability

Robotic fleets are heterogeneous in nature, with diverse
environments around them. Seamless interactions and
collaboration require interoperability among robots. Inter-
operable FL [?] can help mitigate data level heterogeneity
among robotic clients. It can also enable knowledge shar-
ing among diverse domains, resulting in better-generalized
models. The interoperable FL for these systems should be
developed while keeping in consideration the operational
divergence, scalability, and sensor disparities in cloud
robotic systems while keeping privacy and security intact.



E. Advancing security and trust

Trust can studied from two different aspects in FL-
based cloud robotic systems. The system perspective and
the human perspective [?]. While trust from a human
standpoint is critical, we believe that FL-based cloud
robotic systems need to establish trust between various
system components. As we integrate FL and cloud with
robotics, it is necessary that the cloud can trust the par-
ticipating parties and vice-versa. The cloud can provide
control for the robotic system, while FL can enhance the
sense of ownership and privacy among them. Trust and
security have a reciprocal relationship. While establishing
a secure system results in the trust of the individual
parties, it can also act as a precursor, as the individual
parties’ trust establishment provides the basis for a secure

system. We believe that federated learning can help with
trustworthiness in cloud robotics, and we need further
research to establish the challenges concerning security in
trust in FL-based cloud robotic systems.

VII. Concluding Remarks

In this paper, we discussed the application of FL to
cloud robotic systems. We evaluated the current literature
on this topic, outlined current challenges, and provided
future research directions. While we believe that FL can
enhance privacy in cloud robotic systems, we encourage
further research to mitigate heterogeneity, improve com-
munication efficacy, and establish trust in security in FL-
based cloud robotic systems.


