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Abstract:
Android malware detectors increasingly rely on machine

learning algorithms that are trained on datasets containing
both benign (goodware) and malicious (malware) applications.
These detectors have shown excellent results when the train-
ing and testing sets are collected over a fixed period. However,
recent research indicates that the domain is not static due to
ongoing changes in applications, which can lead to a decline
in detector performance over time. The most effective solu-
tion to maintain the performance of these detectors is to con-
tinuously retrain them to update their knowledge. However,
labeling data can be costly, as each sample requires analysis
by a specialist. One straightforward approach is to use Active
learning (AL), implementing techniques that select a subset of
the most informative samples to be labeled, and leave the rest
unlabeled. Despite its potential, there have been few attempts
to compare and evaluate existing AL methods. In our study,
we test six benchmark strategies to evaluate and compare their
effectiveness in the Android malware domain. Our results show
that 10% of the data is labeled using any of these methods is
enough to achieve detector performance closely matching that
of a fully supervised model. This confirms that AL can effec-
tively counter concept drift while keeping labeling costs to a
minimum.

1 Introduction

Android is currently the most popular mobile operat-
ing system. Still, its popularity has also made it a prime
target for cyberattacks aimed at developing malicious ap-
plications that can compromise users’ data and security.
Detecting malicious Android applications has become a
critical task for mobile security. Machine learning (ML)
has been widely adopted to automate malware detec-

tion, demonstrating excellent performance when trained
on large datasets of both benign and malicious applica-
tions [?]. However, recent studies [?] have shown that
this domain is prone to data drift over time, which causes
significant degradation in the performance of ML models
when deployed in real-world scenarios. To address this
problem, detection models need to be retrained to adapt
to the ever-evolving threats. However, acquiring labels
for new samples is expensive and requires significant hu-
man expertise. Active learning (AL) offers a promising
solution by selectively querying labels for the most infor-
mative samples, reducing the labeling effort while main-
taining high detection performance [?]. Although several
AL strategies have been proposed in different domains,
few works have systematically evaluated these methods in
the context of Android malware detection.

In this paper, we compare several AL strategies pro-
vided by the scikit-activeml library1 in a realistic context
affected by temporal drift. We simulate a time-aware eval-
uation where new applications arrive sequentially in time
and analyze the model’s ability to adapt using different
AL strategies and labeling budgets. Through this analy-
sis, we aim to provide insights into (i) the ability of AL
strategies to maintain detection performance in the pres-
ence of data drift, and (ii) the comparative effectiveness
of different standardized AL strategies in identifying the
most suitable approaches for Android Malware detection.
Our results show that labeling 10% of the test set with AL
strategies can achieve performance comparable to an ideal
cumulative retraining scenario, thus significantly reducing
annotation costs while maintaining high detection quality.

In the following, we first introduce Android malware
detection and the challenge of temporal drift (Sect. 2).
We then describe the AL scenario and available strategies

1https://github.com/scikit-activeml/scikit-activeml
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(Sect. 3). Afterwards, we present our analysis (Sect. 4),
followed by conclusions and future research directions
(Sect. 5).

2 Machine Learning for Android Security

This section provides essential background information
on Android applications and ML-based techniques to de-
tect Android malware. Furthermore, we describe the main
issue of data drift for these approaches.
Android Application Structure. Android Applications are
packaged and distributed, and installed through Android
Application Package (APK) files. These are archive files
with a .apk extension that encapsulate all components nec-
essary for installation and execution. An APK includes
the application bytecode, compiled from Java or Kotlin
in Dalvik format, within one or more classes.dex files. It
also contains the AndroidManifest.xml, a file that declares
essential metadata such as the app’s name, version, per-
missions, and the main components of the application.
ML-based Android Malware Detection. In this work, we
adopt a feature extraction approach inspired by Drebin [?],
a static malware detector based on a linear SVM, which
extracts a variety of static features from Android appli-
cations. Specifically, features such as permissions, com-
ponents, filtered intents, API calls, and network ad-
dresses are derived from the AndroidManifest.xml and the
classes.dex files, and represented using a binary vector en-
coding their presence. In this setting, the machine learning
input X consists of binary vectors representing the pres-
ence or absence of static features in each application, while
the corresponding label y indicates whether the applica-
tion is benign or malicious.
Impact of Temporal Drift. Despite the initially reported
excellent performance of Drebin and similar learning-
based detectors, subsequent studies have highlighted that,
to properly assess these models in realistic setting, the
data must be split chronologically. Specifically, train-
ing the data on earlier samples and testing it on later
ones revealed significant drops of model performance over
time [?].

First, the Android OS introduces new APIs and dep-
recates older ones, causing changes in the feature space.
Furthermore, while new malware families emerge rarely,
a large number of variants are continuously developed to
evade detection. These variants may exhibit patterns not
captured by the training data, resulting in changes in dis-
tribution. Therefore, some features may become obsolete,

while others may not be detected by static analysis, as
they violate the standard assumption of independence and
identical distribution of data in the training and test sets,
which is the basis of most ML models. This problem can
be solved by either designing models robust to tempo-
ral drift, or by retraining the models with new and more
recent samples. However, this second strategy requires
significant labeling cost, therefore being difficult to imple-
ment in practice.

3 Active Learning

In this section, we will introduce the theory behind AL,
with a focus on the techniques used in our experiment. We
will also discuss previous research that has investigated AL
in the field of malware detection.

AL is a branch of ML that emphasizes the iterative
selection of the most informative unlabeled samples for
annotation, based on specific criteria known as the AL
strategy. These strategies define which samples are prior-
itized for labeling, to maximize model improvement while
minimizing the number of labeled examples required. AL
can be categorized into several subfields based on how and
when the samples are selected:

• Pool-based. The model has access to a large pool of
unlabeled instances, and the goal is to select the most
informative samples to query for labeling;

• Stream-based. Assumes that instances arrive in a
continuous stream over time, and decisions about la-
beling must be made immediately;

• Query Synthesis The learner has complete freedom to
label any data point belonging to the input space or
for a synthetically generated one;

Among the three categories, pool-based is the most suit-
able for Android malware detection because, in real-world
scenarios, we often deal with large pools of applications
whose maliciousness is unknown. At the same time, the
number of labels that an analyst can provide is limited,
especially within tight time constraints. Therefore, it is
essential to identify and select the most informative sam-
ples from the pool to maximize the impact of each labeling
effort.

3.1 Pool-based Strategies

The AL pool-based strategies distinguish themselves by
their definitions of what constitutes an informative sam-



ple. The interpretation of an informative sample can vary
depending on the underlying model or the domain in which
the technique is applied. Different strategies have been
proposed in the literature, each aiming to exploit differ-
ent properties of the data. In the following, we detail the
strategies considered in our evaluation.
Random Sampling. Random Sampling is the simplest
form of selection, where instances are selected uniformly
at random from the unlabeled data set for labeling. De-
spite its simplicity, it serves as a baseline for evaluating
the effectiveness of more advanced AL strategies.
Margin Sampling. Margin sampling [?] selects the sample
for which the difference between the top two predicted
class probabilities is the smallest:

x∗ = argmin
x

(P (y1|x)− P (y2|x))

A small margin implies that the model is almost equally
uncertain between the two classes.
Least-Confident Sampling. Least-Confident sampling [?]
selects the instance for wich the model has the least con-
fidence in its prediction:

x∗ = argmin
x

P (y∗|x)

where: y∗ = argmaxy P (y|x). It targets samples where
the classifier is farthest from a confident decision, focusing
on instances that lie close to the decision boundary.
Entropy Sampling. Entropy sampling [?] selects the sam-
ple with the highest predictive entropy, defined as:

x∗ = argmax
x

−
∑
i=1

P (yi|x) logP (yi|x)

where P (yi|x) is the predicted probability of class yi. En-
tropy measures the total uncertainty of the model across
all classes: a higher entropy indicates greater uncertainty.
Expected Average Precision (EAP). EAP [?] estimates,
for each sample, the expected improvement in Average
Precision (AP) if the sample were labeled and added to
the training set:

x∗ = argmax
x

EAP(x), where:

EAP(x) = P (y∗ = 1|x∗)·AP(y∗=1)
new +P (y∗ = 0|x∗)·AP(y∗=0)

new

AP is a more complex evaluation metric than accuracy
and can be described as the area under the precision-recall
curve. This strategy favors samples likely to improve the

model’s ranking quality, which is especially useful in un-
balanced or detection tasks.

CLustering with Uncertainty-weighted Embeddings
(CLUE). CLUE [?] selects uncertain samples represen-
tative in the feature space. It optimizes the selection
via:

x∗ = argmin
x

(u(x)− sim(x,Ck))

where u(x) denotes the model uncertainty for sample x,
Ck is the centroid of the cluster to which x belongs, and
sim(x,Ck) measures the similarity between x and the clus-
ter center. This balances informativeness (uncertainty)
and diversity (input space coverage).

3.2 Active Learning for Android Malware Detection

Building on the characteristics of AL outlined in
Sect. 3, its application in the malware detection domain
is straightforward. AL is particularly effective at identify-
ing the most informative samples. Since labeling samples
can be costly, especially when experts must manually an-
alyze suspicious binaries, this approach is well-suited for
enhancing Android malware classifiers while minimizing
the need for extensive annotation.

Several recent studies have explored AL techniques for
malware detection. ActDroid [?] implements an uncer-
tainty sampling strategy based on prediction margins
for streaming Android malware, combined with semi-
supervised learning to exploit both labeled and unlabeled
data. MalOSDF [?] applies classical uncertainty-based
querying to enhance a semi-supervised ensemble classifier
operating over opcode slice features, where selection and
model update are tightly coupled. MORPH [?] adopts a
margin-based active selection scheme tailored to pseudo-
labeled samples, dynamically adapting the margin thresh-
olds to account for concept drift. Continuous Learning for
Android Malware Detection [?] integrates a custom priori-
tization function based on contrastive learning to actively
select samples for retraining within a continual learning
setting. While these works demonstrate the potential of
AL, their solutions are primarily customized to particular
detection architectures, feature sets, or learning setups. In
contrast, our work systematically benchmarks standard-
ized, model-agnostic AL strategies within a realistic An-
droid malware detection setting, promoting reproducibil-
ity and broader applicability across different systems.



4 Experiments

This section will explain the experimental setup and the
results obtained from our experiments.
Dataset. The dataset used in our experiments is derived
from the Android malware detection competition provided
as part of the ELSA Cybersecurity Use Case.2 The appli-
cations are sampled from the AndroZoo repository [?], a
large-scale collection of Android applications. Each appli-
cation is labeled based on VirusTotal scan reports: sam-
ples with no detections by any antivirus engine are labeled
as benign, while those detected by at least 10 engines and
unambiguously mapped to a malware family using the av-
class tool3 are labeled as malicious. Samples with ambigu-
ous or insufficient detection evidence are excluded. Fol-
lowing standard practice in the literature [?], the dataset
maintains a 9:1 ratio between benign and malicious sam-
ples. For our analysis, we rely on the training and test
sets provided by the organizers for “Track 3: Temporal
Robustness to Data Drift”, comprising a total of 137, 500
applications (123, 750 benign and 13, 750 malware), col-
lected between January 2017 and June 2022.

Although AL typically benefits from dense feature rep-
resentations, we applied a feature selection step to reduce
computational overhead without compromising model per-
formance. Specifically, we retained only the 10,000 most
frequent features, ranked according to their frequency of
occurrence in the initial training set. This dimensionality
reduction significantly accelerates both the model train-
ing and AL steps, while maintaining comparable detection
performance.
Retraining Phase. To simulate a realistic evaluation under
temporal drift, the dataset is split chronologically. The
first 75, 000 samples, covering the period from January
2017 to December 2019, are used as the initial training
set. The remaining 62, 500 samples, spanning the period
from January 2020 to June 2022, are split into 10 time-
ordered segments, each containing 6, 250 applications. At
each iteration (so approximately every 3 months in the
simulation), one quarter is used as a test set to evaluate
the model’s predictions. After evaluation, AL is applied
by selecting new informative samples from the current
test quarter and adding them to the training set. Specifi-
cally, we test four labeling budgets: 60, 125, 312, and 625
samples, which correspond to approximately 1%, 2%, 5%,
and 10% of applications available in each quarter. The

2https://github.com/pralab/elsa-cybersecurity
3https://github.com/malicialab/avclass

resulting augmented training set is then used to retrain
the model before proceeding to the next quarter. This
setup allows us to evaluate the effectiveness of different
AL strategies in fitting the model to a non-stationary data
distribution over time.
Models. We use a Linear Support Vector Machine (SVM)
classifier with Hinge Loss and C = 0.1, consistent with
the baseline model provided in the ELSA Cybersecu-
rity Use Case. To ensure compatibility with the scikit-
activeml framework, which requires classifiers to con-
form to specific interface requirements, we implemented
a lightweight wrapper around the standard scikit-learn
SVM. Since several AL strategies require reliable prob-
ability estimates, the SVM was calibrated using a sig-
moid calibration method implemented via CalibratedClas-
sifierCV. This calibration step ensures that the decision
function outputs can be interpreted as probabilities, en-
abling uncertainty-based AL strategies. In addition to
the SVM, we evaluate a standard Random Forest clas-
sifier, configured with 80 trees and a maximum depth of
30. The hyperparameters for both models were selected
through manual cross-validation, testing multiple config-
urations and selecting the ones yielding the best overall
performance. Both classifiers operate on binary feature
vectors generated using a CountVectorizer fitted on the
initial training set.
Performance Evaluation. To evaluate the model’s perfor-
mance, we use the following standard classification met-
rics:
Precision measures the proportion of correctly predicted
positive samples among all samples classified as positive:
Precision = TP

TP+FP ;
Recall (also known as True Positive Rate) measures the
proportion of correctly identified positive samples among
all actual positive samples: Recall = TP

TP+FN ;
F1 is the harmonic mean of precision and recall, providing
a balanced measure particularly useful under class imbal-
ance: F1 = 2× Precision×Recall

Precision+Recall ;
Accuracy measures the proportion of correctly classified
samples (both positive and negative) among all samples:
Accuracy = TP+TN

TP+TN+FP+FN ;

Results. For each labeling budget, we compare the AL
strategies described in Sect. 3 against two reference base-
lines: (i) a Naive baseline, where the model is only trained
on the initial training set without any updates, and (ii)
a Cumulative baseline, where all test samples are incre-
mentally added to the training set without selection (i.e.,
assuming unlimited labeling capacity). The performance

https://github.com/pralab/elsa-cybersecurity
https://github.com/malicialab/avclass


trends, illustrated in Fig. 1, clearly show that retraining
with AL strategies can significantly mitigate the perfor-
mance degradation caused by temporal drift across both
Linear SVM and Random Forest models. Specifically,
Uncertainty Sampling consistently outperforms both the
Naive baseline and Random Sampling across all budgets.
Among these, CLUE demonstrates strong and stable per-
formance across both models, whereas EAP achieves good
results with the SVM but struggles with the Random For-
est, showing lower F1 scores and greater instability. No-
tably, when using a labeling budget of 625 samples per
quarter, almost all tested AL strategies achieve F1 scores
comparable to the Cumulative baseline, thus approach-
ing the ideal scenario with only a fraction of the labeling
effort. Although Random Sampling shows some improve-
ment over the naive baseline, it remains significantly less
effective than uncertainty-based approaches, highlighting
the importance of selecting more informative strategies
that are well-suited to the model and the evolution of the
data distribution. These observations highlight that AL
can achieve high performance over time if the right strat-
egy is chosen, significantly reducing the amount of labeled
data needed, and thus the human effort. Furthermore,
Tab. 1 provides a detailed summary of the average Pre-
cision, Recall, F1-score, and Accuracy achieved by each
strategy on different labeling budgets. The results confirm
that uncertainty-based methods consistently outperform
Random Sampling and the Naive baseline, with much less
annotation effort than the Cumulative baseline. Further-
more, we observe that the gap between uncertainty-based
strategies and the Naive baseline becomes even more pro-
nounced at higher labeling budgets, highlighting the abil-
ity of AL to increasingly exploit informative samples as
more labels become available.

5 Conclusions

In this paper, we compare different AL strategies in a re-
alistic time-drift context. Different from most existing ap-
proaches, which typically design customized solutions, we
systematically evaluate standardized AL methods along
with a standard detection model, without introducing
domain-specific adaptations. This enables an objective
and reproducible comparison of different approaches in
the context of Android malware detection. Our results
demonstrate that AL significantly mitigates the perfor-
mance degradation caused by temporal drift. In partic-
ular, with a labeling budget of only 10% of the available

samples, most of the tested uncertainty-based strategies
achieve F1 scores comparable to the ideal cumulative re-
training scenario, highlighting the potential of AL to main-
tain high detection performance while substantially reduc-
ing labeling costs. In future work, we plan to extend our
evaluation to different malware detection datasets, includ-
ing non-Android environments, to assess the generaliza-
tion capabilities of the tested strategies. Furthermore, we
aim to explore the integration of AL with semi-supervised
learning and continual learning paradigms to further en-
hance model adaptation over time. Finally, we will investi-
gate novel AL strategies specifically designed to minimize
the labeling budget while maintaining robustness against
complex and evolving drift patterns.
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FIGURE 1. Linear SVM and RandomForest comparison curves of F1-score evolution over time using 60 and 625 labeled samples per
quarter with different AL strategies.

Strategy 1% Budget 2% Budget 5% Budget 10% Budget
Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc

Model: Linear SVM
Naive 0.949 0.667 0.765 0.966 0.949 0.667 0.765 0.966 0.949 0.667 0.765 0.966 0.949 0.667 0.765 0.966
RandomSampling 0.922 0.684 0.774 0.966 0.925 0.696 0.783 0.966 0.926 0.705 0.791 0.967 0.927 0.707 0.792 0.968
Least-Confident 0.959 0.685 0.781 0.968 0.965 0.703 0.799 0.970 0.967 0.735 0.827 0.973 0.965 0.756 0.842 0.974
MarginSampling 0.959 0.685 0.781 0.968 0.965 0.703 0.799 0.970 0.967 0.735 0.827 0.973 0.965 0.756 0.842 0.974
EntropySampling 0.959 0.685 0.781 0.968 0.965 0.703 0.799 0.970 0.967 0.735 0.827 0.973 0.965 0.756 0.842 0.974
EAP 0.963 0.700 0.795 0.969 0.967 0.719 0.814 0.971 0.967 0.734 0.827 0.973 0.964 0.753 0.840 0.974
CLUE 0.961 0.704 0.800 0.969 0.967 0.713 0.809 0.971 0.967 0.734 0.827 0.973 0.965 0.748 0.837 0.974
Cumulative 0.941 0.767 0.842 0.974 0.941 0.767 0.842 0.974 0.941 0.767 0.842 0.974 0.941 0.767 0.842 0.974

Model: Random Forest
Naive 0.903 0.563 0.666 0.954 0.903 0.563 0.666 0.954 0.903 0.563 0.666 0.954 0.903 0.563 0.666 0.954
RandomSampling 0.913 0.578 0.682 0.955 0.917 0.594 0.698 0.956 0.928 0.638 0.741 0.961 0.925 0.659 0.755 0.963
Least-Confident 0.923 0.603 0.711 0.958 0.932 0.668 0.764 0.964 0.937 0.687 0.783 0.966 0.940 0.734 0.818 0.970
MarginSampling 0.924 0.602 0.708 0.958 0.926 0.628 0.728 0.960 0.940 0.698 0.793 0.967 0.942 0.728 0.814 0.970
EntropySampling 0.930 0.603 0.711 0.958 0.931 0.620 0.725 0.960 0.937 0.693 0.786 0.966 0.941 0.715 0.806 0.969
EAP 0.925 0.594 0.700 0.957 0.927 0.639 0.742 0.961 0.936 0.672 0.772 0.964 0.940 0.682 0.780 0.966
CLUE 0.918 0.615 0.719 0.958 0.929 0.665 0.764 0.963 0.938 0.692 0.788 0.966 0.940 0.735 0.818 0.970
Cumulative 0.938 0.745 0.826 0.971 0.938 0.745 0.826 0.971 0.938 0.745 0.826 0.971 0.938 0.745 0.826 0.971

TABLE 1. Comparison of Precision, Recall, F1 score, and Accuracy across different AL strategies, budgets, for the two implemented
models.
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