
LESS IS MORE? AN ABLATION STUDY ON AUTOATTACK FOR
ADVERSARIAL ROBUSTNESS EVALUATION

LUCA MELIS1, LUCA SCIONIS1,2, FABIO BRAU1, MAURA PINTOR1, BATTISTA BIGGIO1

1Dept. of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
2Dept. of Computer Engineering, Sapienza University of Rome, Rome, Italy

E-MAIL: {luca.melis6, luca.scionis, fabio.brau, maura.pintor, battista.biggio}@unica.it

Abstract:
AutoAttack is widely recognized as a standard adversarial

robustness evaluation framework, yet the individual contribu-
tions of its components and mechanisms remain insufficiently
explored. In this work, we present a comprehensive ablation
study on the standard AutoAttack version, isolating the singular
contribution of each component, focusing on the attack ensemble,
random initialization, and Expectation over Transformation
(EoT) optimization across four different state-of-the-art robust
models. Our analysis reveals that simplified attack sequences
often achieve results comparable to the complete AutoAttack
sequence while requiring significantly fewer computational
resources. Furthermore, our findings show that EoT generally
provides modest improvements in attack success rate, while
the benefits of random initialization may vary depending on
the model architecture. By identifying which among the Au-
toAttack components has the most significant influence on
the robustness evaluation, our work offers practical recom-
mendations for designing efficient evaluation frameworks that
balance thoroughness with computational cost considerations.
Keywords:

Machine Learning Security; Adversarial Attacks

1. Introduction

Deep Neural Networks are vulnerable to adversarial exam-
ples [1, 2]—subtle perturbations that cause incorrect predic-
tions with high confidence. As machine learning systems be-
come prevalent in safety-critical applications, evaluating adver-
sarial robustness has become a fundamental research direction.
AutoAttack [3] has emerged as the most used evaluation frame-
work since it combines diverse parameter-free attacks to pro-
vide a standardized baseline for assessing model robustness.

By running attacks sequentially, AutoAttack generates adver-
sarial examples by leveraging complementary strengths of dif-
ferent strategies to exploit various defense vulnerabilities. The
framework incorporates three common techniques to improve
attack effectiveness: an attack ensemble exploiting a sequence
of different attack methods suited to various defense strategies;
random initialization which adds small random perturbations to
inputs rather than starting from zero, promoting feature space
exploration; and Expectation over Transformation (EoT) [5]
which averages adversarial loss over multiple random transfor-
mations to improve effectiveness against randomized defenses.
Despite their common use in adversarial attack literature, the
individual impact of these mechanisms on AutoAttack has not
been studied in detail. Our work provides a systematic ablation
study of AutoAttack’s components. By isolating and analyzing
individual attacks and mechanisms, we aim to identify the es-
sential elements driving AutoAttack’s effectiveness, highlight-
ing the need to optimize computational efforts without losing
efficacy. Our experiments use models from RobustBench [6],
allowing analysis across various defenses under standardized
conditions. Our goal is to improve robustness evaluation ef-
ficiency by identifying the most significant components, po-
tentially guiding the creation of better-optimized attack ensem-
bles. The paper is organized as follows: Section 2 analyzes
the components and mechanisms of AutoAttack, Section 3 dis-
cusses our ablation study results, and Section 4 summarizes
findings and suggests future research directions.

2. AutoAttack Structural Analysis

AutoAttack [3] is a framework designed to evaluate the ad-
versarial robustness of machine learning models against ad-
versarial examples, constituted by an ensemble of distinct
parameter-free adversarial attacks. By combining different at-

tack strategies, AutoAttack aims to provide a more reliable and
comprehensive robustness evaluation. In this section, we exam-
ine its structure, describing its principal components and mech-
anisms, discussing therefore possible implications of its design
choices. In the following, we are going to present the basic
concepts about adversarial attacks in 2.1

2.1. Adversarial Attacks

Adversarial attacks aim to find perturbations of input sam-
ples that cause a machine learning model to make incorrect
predictions. For a classification model f : X → Rc, given an
example x correctly classified as y, an adversarial example is a
perturbed input x′ that is classified differently from the original
input x, while ensuring x′ remains perceptually similar to x. In
detail, adversarial attacks can be categorized as either targeted
or untargeted:

• Untargeted Attacks: Aim to cause any misclassifications.
For an input x with true class y, the goal is to find x′ such
that y ̸= argmaxi f(x

′)i.

• Targeted Attacks: Aim to force the model to predict a spe-
cific incorrect class t. The goal is to find x′ such that
t = argmaxi f(x

′)i, where t ̸= y.

Even if a large number of attacks have been proposed in the
literature, one of the most widely known is the Projected Gra-
dient Descent (PGD) [7], that is at the base of two of the attacks
proposed in the AutoAttack framework. Specifically, PGD is
a first-order iterative method that optimizes an adversarial ex-
ample by taking steps in the direction of the gradient of a loss
function L, followed by a projection back onto the allowed per-
turbation space (i.e., a ℓp-norm ball around the original input
x0). Given an input x, and a label y, the PGD update step at
iteration i can be described as follows,

xi+1 = ΠBp
ϵ (x0)(xi + α · gi), (1)

where α is the step size, Bpϵ (x0) = {x′ ∈ X : ∥x′−x0∥p ≤ ϵ}
is the ℓp-ball of radius ϵ centered in x0, and ΠBp

ϵ (x0)(·) is the
projection operator onto this ball. Note that, when the input
data is constituted by images, the input space X coincides with
hyper-rectangle [0, 1]d, meaning that all the input pixels must
satisfy 0 ≤ x ≤ 1, also known as box-constraint.

The direction gi is the sign of the gradient when p = ∞, or
the normalized gradient for p = 2. Formally, the direction step
is deduced as follows,

gi =


t · sign(∇xL(xi, y)) if p = ∞

t · ∇xL(xi,y)
∥∇xL(xi,y)∥2

if p = 2
, (2)

where t = 1 for untargeted attacks and t = −1 for targeted at-
tacks, and y is the true label for untargeted attacks or the target
label for targeted attacks.

2.2. Attacks used in AutoAttack

AutoAttack’s ensemble combines three distinct attacks,
whose aim is to craft adversarial examples capable of fooling
the target model. Here a brief description of these attacks,
specifically APGD (Auto-PGD) and APGD-T (Auto-PGD-
T) [3], FAB (Fast Adaptive Boundary) [8] and SQUARE [9],
will be discussed.

2.2.1. Auto-PGD

APGD is a first-order optimization attack based on the PGD
attack [7]. Unlike standard PGD that operates with a fixed α,
the APGD step size is dynamically adjusted during the attack,
by monitoring the optimization progress (i.e., checking if the
loss is consistently decreasing/increasing). In detail, while per-
forming the optimization, if no increase of the loss function
is registered after a predefined number of iterations, then the
step-size α is halved. This allows for faster convergence ini-
tially and finer adjustments later. If α becomes too small, the
attack might restart or terminate. This version of APGD lever-
ages the Cross-Entropy loss function to perform an untargeted
attack. The CE loss operates on the model’s output probabil-
ities p ∈ [0, 1]

c, which are obtained by applying the softmax
function to the logits z = f(x), where f : X → Rc is the clas-
sification model. Formally, the CE loss is defined as follows

LCE(x, y) = − log(py) = − log
exp(f(x)y)∑
i exp(f(x)i)

. (3)

Observe that, finding the x′ that maximizes this loss, by fol-
lowing the iteration procedure described in Eq. 1, causes the
model to misclassify the adversarial input x′.

2.2.2. Auto-PGD-Targeted

APGD-T produces an untargeted attack via a sequence of
targeted attacks. For an input x with true class y, the attack
selects the top-k logits (k = 10) excluding the true class as
potential targets. For each target class t ̸= y, a separate targeted
attack executes using a specially designed loss. By targeting
the most promising classes, this approach efficiently explores
the adversarial landscape around the decision boundary.

Given an input x with true class y and target class t, the
Targeted Difference of Logits Ratio DLR-T is formulated as

Ltargeted
DLR (x, y) = − zy − zt

zπ1 − 1
2 (zπ3 + zπ4)

, (4)

where π represents indices of logits sorted in descending order.
The numerator contrasts the correct class logit and target class
logit, driving zt to surpass zy . The denominator normalizes the
difference and prevents degenerate cases.

2.3. FAB and Square Attacks

AutoAttack integrates two complementary attack strategies:
FAB and SQUARE Attack, each targeting different defense vul-
nerabilities.
FAB [8] finds the minimal ℓp-norm perturbation (p ∈

{1, 2,∞}) making correctly classified inputs adversarial. It
iteratively searches for the closest misclassified point by ini-
tializing from the original point or randomly at distance
min{u, ϵ}/2, identifying the class with minimal ratio of logit
to gradient differences, computing boundary projections, up-
dating points using convex combinations with coefficient α,
maintaining the best adversarial example xout, and performing
interpolation between original and updated points using param-
eter β. In AutoAttack, a targeted version called FAB-T is em-
ployed.
SQUARE Attack [9] operates as a black-box, score-based ap-

proach that doesn’t require gradient access, making it effec-
tive against gradient-masking defenses [10]. It applies random,
structured perturbations by modifying square regions of the in-
put, accepting or discarding perturbations based on whether
they produce misclassification. The algorithm initializes a can-
didate adversarial example, selects squares of decreasing side
length h(i) according to a predefined schedule, samples pertur-
bations δ applied to square regions, projects perturbed inputs
to satisfy norm constraints, and updates candidates when better
loss values are found.

2.4. AutoAttack Pipeline

AutoAttack is structured as a sequential pipeline of adversar-
ial attacks, each included to progressively increase the overall
attack success rate. In its standard configuration, AutoAttack is
constituted by four distinct attacks, in the following fixed order:

1. APGD-CE (Auto-PGD with CE loss).

2. APGD-T (Auto-PGD-T with DLR-T loss).

3. FAB-T (Fast Adaptive Boundary).

4. SQUARE Attack.

Starting from the first attack, each one is run sequentially.
Unsuccessfully attacked samples are passed to the next attack,
while successful ones are filtered out. The process continues
until all the samples have been successfully attacked or all at-
tacks in the ensemble have been applied.

2.5. Additional Heuristics

AutoAttack incorporates a few heuristics to boost the effec-
tiveness of its ensemble. Two of the most relevant are Ran-
dom Initialization and Expectation over Transformation. For
Random Initialization, a random starting point x0 is used in
all the attacks. For ℓ∞ and ℓ2 norms, random vectors are
sampled from uniform and Gaussian distributions respectively,
then normalized and scaled. The ℓ1 case uses a specialized
projection function, Π1(x, ϵ), that is the projection on B1

ϵ (x),
the l1-ball of radius ϵ used in equation 1, to ensure constraint
satisfaction. Notably, APGD and SQUARE attacks utilize the
full perturbation budget (ϵ) when initializing adversarial exam-
ples, while FAB consistently employs a more conservative ap-
proach, using only half the perturbation budget (0.5ϵ) across
all norm types. Table 1 illustrates the initialization strategies
employed by different adversarial attack methods across vari-
ous norm constraints. Expectation over Transformation (EoT)

TABLE 1. Initial perturbation strategies for different attack methods and
norms.

Attack Norm Initial Point

APGD, SQUARE
ℓ∞ x0 = x+ ϵ · u, u ∼ U (−1, 1)

ℓ2 x0 = x+ ϵ · u
∥u∥2

, u ∼ N (0, 1)

ℓ1 x0 = Π1(v, ϵ), v ∼ N (x, 1)

FAB
ℓ∞ x0 = x+ ϵ · u, u ∼ U (−0.5, 0.5)

ℓ2 x0 = x+ ϵ · u
∥u∥2

, u ∼ N (0, 0.5)

ℓ1 x0 = Π1(v, 0.5ϵ), v ∼ N (x, 1)

is a technique that computes the expected value of the loss
function over a distribution of input transformations. For-
mally, EoT optimizes Eψ∼Ψ[L(f(ψ(x)), y)] instead of simply
L(f(x), y), where Ψ represents a set of possible transforma-
tions (e.g., affine transformations, small rotations, translations,
or brightness adjustments). By averaging gradients across mul-
tiple transformed versions of the input, adversarial examples
become robust against defenses that employ preprocessing or
data augmentation techniques. In AutoAttack, EoT is specifi-
cally implemented in the APGD component to enhance attack

transferability across different defensive preprocessing meth-
ods.

3. Experiments

This section proposes an ablation study made up to deter-
mine which components have a relevant impact on the ensem-
ble results, both in terms of performance and computational
costs. Here, we describe how we set up our experiments and
then present the results obtained.

3.1. Experimental Setup

All experiments have been conducted on a single NVIDIA-
RTX-A6000 GPU, with a fixed seed for reproducibility. We
used a subset of 1000 samples from CIFAR-10 [11] test dataset.
AutoAttack has been evaluated on three state-of-the-art ro-
bust models, taken directly from RobustBench [6]: M1, a
WideResNet-28-10 adversarially trained with improved diffu-
sion model data augmentation [12]; M2, a PreActResNet-18
adversarially trained with diffusion-generated data augmenta-
tion [13]; M3, an XCiT-L12 adversarially trained with a cus-
tom recipe for Vision Transformers [14]. Finally, M4, a sparse
ResNet18 whose defense relies on obfuscated gradients [15].
Each model is tested using ℓ∞ and ℓ2 as threat models (ex-
cept for M4, which is only tested on L∞). We focused on the
standard norms ℓ∞ (perturbation budget ϵ = 8/255) and ℓ2
(perturbation budget ϵ = 0.5) as perturbation constraints, since
AutoAttack is considered as a reference in these two norms for
the evaluation of adversarial robustness.

To properly compare the effects of the single components,
we implemented a custom version of AutoAttack that enables
selective activation or deactivation of the functionalities dis-
cussed in the previous section. Our main objective is to pre-
serve the integrity of the original AutoAttack pipeline while
allowing this analysis.

3.1.1. Evaluation Metrics

For each experiment, we collect both per-sample and aggre-
gated results, including: the Attack Success Rate (ASR), the
fraction of test samples for which an adversarial example is
found:

ASR =
Success

Total samples
(5)

The number of Queries as the average total number of for-
ward (classifications) and backward passes (gradients evalua-
tion) computed per sample:

Queries = #Forwards +#Backwards (6)

Finally, the Execution time, the total runtime required for each
attack configuration.

For our ablation study, 32 configurations per model were
considered (except for M4, with only 16 configurations as it’s
only tested on L∞). We allowed selection for Random initial-
ization in all four attacks in the standard pipeline to consent
or not to the alteration. We also considered whether to apply
Expectation over Transformation (EoT). If not applied, the gra-
dient is initialized to zero before the first attack iteration.

For each sample, we save the original and adversarial predic-
tions, in addition to tracking metrics. Results are presented and
discussed in the following sections.

3.2. Results

All the results are reported in Table 2. Across all the
non-obfuscated-gradient models—M1, M2, and M3—the re-
sults reveal a clear trend: the first two attacks in the pipeline,
APGD-CE and APGD-T, account for all or almost the entirety
of the improvement in attack success rate (ASR) overall. As
shown in Table 2, the introduction of APGD-T provides a no-
ticeable increase in ASR (typically between 1 and 3 percentage
points, depending on the model and norm), highlighting the
combination of targeted attacks with untargeted ones. How-
ever, the addition of FAB-T and SQUARE Attack to the en-
semble does not provide any further meaningful improvement.
In virtually all configurations, ASR remains unchanged after
their inclusion, despite a substantial increase in computational
cost. This observation raises an important question about the
cost-effectiveness of maintaining such a broad attack ensem-
ble for standard robust models: does the marginal gain (often
virtually zero) justify the extra computational effort? Our evi-
dence suggests that it does not, at least for those models that do
not rely on forms of gradient obfuscation [10]. Regarding the
auxiliary heuristics of the pipeline, random initialization and
Expectation over Transformation (EoT) appear to have only a
marginal effect on ASR, as shown in Table 2. Any observed
change in robustness is, in practice, negligible (typically 0.1
percentage points or less) and, crucially, not consistent across
models or threat models. In some cases, as shown in Table 2
for model M3 (norm ℓ2), the presence of these two mechanisms
seems to reduce, even if by a small amount, the overall ASR.
For what concerns robustness evaluation in the presence of gra-
dient obfuscation, the impact of the SQUARE Attack is evident.
In particular, when attacking the M4 model, which is known
to employ gradient obfuscation, the SQUARE Attack is able to
bypass the defense and achieve a substantial increase in ASR
(up to 10 percentage points over the ensemble without it). This
result shows the effectiveness of black-box attacks in improv-

TABLE 2. Comprehensive AutoAttack ablation study across all models (M1-M4).

Norm R.Init EoT Attacks M1 M2 M3 M4
ASR Queries Time ASR Queries Time ASR Queries Time ASR Queries Time

ℓ∞

F F

apgd-ce 0.286 196 74.1 0.388 186 20.0 0.403 195 213.4 0.643 142 22.1
apgd-ce+apgd-t 0.322 1440 555.7 0.414 1260 139.4 0.418 1262 1392.1 0.756 629 192.6

apgd-ce+apgd-t+fab-t 0.322 3290 1257.8 0.414 2859 308.3 0.419 2848 3110.1 0.756 1267 359.0
apgd-ce+apgd-t+fab-t+square 0.322 6683 2449.0 0.414 5792 548.2 0.419 5755 6045.6 0.865 1818 671.5

F T

apgd-ce 0.285 197 74.9 0.389 186 19.0 0.403 196 214.7 0.653 143 20.4
apgd-ce+apgd-t 0.322 1447 557.9 0.415 1265 141.1 0.420 1265 1395.7 0.765 604 199.4

apgd-ce+apgd-t+fab-t 0.322 3297 1260.4 0.415 2862 308.9 0.421 2846 3103.6 0.765 1207 386.9
apgd-ce+apgd-t+fab-t+square 0.322 6690 2450.1 0.415 5789 546.1 0.421 5746 6037.2 0.862 1771 706.3

T F

apgd-ce 0.286 196 72.6 0.388 186 19.2 0.400 195 213.8 0.656 142 20.8
apgd-ce+apgd-t 0.322 1440 555.6 0.414 1260 139.7 0.419 1261 1392.1 0.767 610 196.5

apgd-ce+apgd-t+fab-t 0.322 3290 1256.9 0.414 2859 307.2 0.420 2844 3109.2 0.767 1210 362.4
apgd-ce+apgd-t+fab-t+square 0.322 6683 2451.7 0.414 5791 545.2 0.420 5746 6040.8 0.863 1766 693.1

T T

apgd-ce 0.283 197 74.8 0.387 186 19.2 0.400 196 214.8 0.657 143 19.9
apgd-ce+apgd-t 0.322 1447 557.7 0.414 1267 141.4 0.419 1267 1402.4 0.760 606 187.7

apgd-ce+apgd-t+fab-t 0.323 3295 1258.0 0.414 2866 310.0 0.420 2850 3110.1 0.760 1222 391.9
apgd-ce+apgd-t+fab-t+square 0.323 6682 2452.3 0.414 5799 547.1 0.421 5743 6049.1 0.867 1784 675.2

ℓ2

F F

apgd-ce 0.161 199 75.8 0.324 186 19.4 0.273 195 212.5 - - -
apgd-ce+apgd-t 0.172 1709 656.6 0.342 1388 155.7 0.285 1500 1390.8 - - -

apgd-ce+apgd-t+fab-t 0.172 3969 1500.6 0.342 3183 340.2 0.285 3451 3107.4 - - -
apgd-ce+apgd-t+fab-t+square 0.172 8112 2985.9 0.342 6476 642.0 0.285 7029 6041.2 - - -

F T

apgd-ce 0.161 200 76.2 0.324 186 19.1 0.272 196 214.3 - - -
apgd-ce+apgd-t 0.172 1717 659.7 0.341 1397 158.2 0.284 1509 1398.6 - - -

apgd-ce+apgd-t+fab-t 0.172 3978 1504.7 0.341 3193 341.8 0.284 3463 3112.8 - - -
apgd-ce+apgd-t+fab-t+square 0.172 8121 2982.3 0.341 6485 646.8 0.284 7046 6053.7 - - -

T F

apgd-ce 0.161 199 75.9 0.324 186 19.5 0.272 195 213.1 - - -
apgd-ce+apgd-t 0.172 1709 656.8 0.342 1388 155.4 0.285 1501 1391.5 - - -

apgd-ce+apgd-t+fab-t 0.172 3969 1505.4 0.342 3183 341.3 0.285 3451 3105.7 - - -
apgd-ce+apgd-t+fab-t+square 0.172 8112 2981.6 0.342 6476 643.8 0.285 7029 6039.8 - - -

T T

apgd-ce 0.161 200 76.2 0.324 186 19.3 0.272 196 215.2 - - -
apgd-ce+apgd-t 0.172 1717 659.6 0.341 1397 157.5 0.284 1509 1400.3 - - -

apgd-ce+apgd-t+fab-t 0.172 3978 1506.5 0.341 3193 342.9 0.284 3463 3112.8 - - -
apgd-ce+apgd-t+fab-t+square 0.172 8121 2994.2 0.341 6485 646.1 0.284 7046 6050.3 - - -

ing the attack success rate when a model’s defense relies on
gradient obfuscation. However, notable results are achieved
even with the combination of APGD and APGD-T. From the
perspective of computational efficiency, each additional attack
consistently increases the computational resources required, as
shown in the results. The per-sample query count grows from
around 200, using APGD-CE alone, to around 7000 for the en-
tire ensemble for model M2, and the execution time increases
accordingly. However, as previously noted, this additional cost
is not matched by a corresponding increase in ASR. Most of
the benefit has already been obtained with the first two attacks,
which means that only APGD effectively impacts the ensemble;
the rest of the pipeline predominantly adds overhead.

4. Conclusions and Future Work

In this work, we carried out an ablation study of the AutoAt-
tack framework, questioning the necessity and effectiveness of
some of its components when applied to a set of state-of-the-art
robust models. Our results reveal that the majority of the attack
success rate (ASR) gains are achieved by the first two attacks
in the pipeline, namely APGD-CE and APGD-T. Including fur-

ther attacks—FAB-T and SQUARE Attack rarely leads to any
substantial improvement in ASR for models that do not employ
gradient obfuscation while consistently adding relevant compu-
tational effort. We highlight the advantage of combining an at-
tack with its targeted version to increase ASR performance. In
contrast, random initialization and Expectation over Transfor-
mation (EoT) provide marginal benefits, at least in our results.

Based on these findings, we recommend a more selective ap-
proach in adversarial robustness evaluation: for standard robust
models, restricting the ensemble to APGD-CE and APGD-T of-
fers a favorable balance between attack strength and computa-
tional efficiency, while the whole ensemble, including SQUARE
Attack, should be reserved for cases where gradient obfuscation
is suspected.

This study is not without limitations. Our analysis is con-
fined to a specific set of models and attack parameters; more-
over, our study was conducted only on a subset of samples from
the CIFAR-10 dataset. It may be necessary to extend the anal-
ysis to other datasets. Future research may explore the devel-
opment of effective ensemble methodologies exploiting more
different attacks while keeping low computational costs.

Acknowledgements

This work has been carried out while L. Scionis was enrolled
in the Italian National Doctorate on AI run by the Sapienza
University of Rome in collaboration with the University of
Cagliari. This work has been partly supported by the EU-
funded Horizon Europe projects ELSA (GA no. 101070617),
Sec4AI4Sec (GA no. 101120393) and CoEvolution (GA no.
101168560); and by the projects SERICS (PE00000014) and
FAIR (PE00000013) under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGenera-
tionEU.

References

[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks
against machine learning at test time,” in ECML PKDD,
Part III, ser. LNCS, vol. 8190. Springer Berlin Heidel-
berg, 2013, pp. 387–402.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, “Intriguing properties of
neural networks,” in ICLR, 2014.

[3] F. Croce and M. Hein, “Reliable evaluation of adversar-
ial robustness with an ensemble of diverse parameter-free
attacks,” in ICML, 2020.

[4] C. Yao, P. Bielik, P. Tsankov, and M. Vechev, “Auto-
mated discovery of adaptive attacks on adversarial de-
fenses,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 26 858–26 870, 2021.

[5] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok,
“Synthesizing robust adversarial examples,” in Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, ser. Proceedings of Machine Learn-
ing Research, J. Dy and A. Krause, Eds., vol. 80.
PMLR, 10–15 Jul 2018, pp. 284–293. [Online]. Avail-
able: https://proceedings.mlr.press/v80/
athalye18b.html

[6] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti,
N. Flammarion, M. Chiang, P. Mittal, and M. Hein, “Ro-
bustbench: A standardized adversarial robustness bench-
mark,” in NeurIPS Datasets and Benchmarks, 2021.

[7] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to ad-

versarial attacks,” in International Conference on Learn-
ing Representations, 2018.

[8] F. Croce and M. Hein, “Minimally distorted adversarial
examples with a fast adaptive boundary attack,” in ICML,
2020.

[9] M. Andriushchenko, F. Croce, N. Flammarion, and
M. Hein, “Square attack: a query-efficient black-box ad-
versarial attack via random search,” 2020.

[10] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples,” in International confer-
ence on machine learning. PMLR, 2018, pp. 274–283.

[11] A. Krizhevsky, G. Hinton et al., “Learning multiple layers
of features from tiny images,” 2009.

[12] Z. Wang, T. Pang, C. Du, M. Lin, W. Liu, and S. Yan,
“Better diffusion models further improve adversarial
training,” in International conference on machine learn-
ing. PMLR, 2023, pp. 36 246–36 263.

[13] S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A.
Calian, and T. A. Mann, “Improving robustness using
generated data,” Advances in neural information process-
ing systems, vol. 34, pp. 4218–4233, 2021.

[14] E. Debenedetti, V. Sehwag, and P. Mittal, “A light recipe
to train robust vision transformers,” in 2023 IEEE Con-
ference on Secure and Trustworthy Machine Learning
(SaTML). IEEE, 2023, pp. 225–253.

[15] C. Xiao, P. Zhong, and C. Zheng, “Enhancing ad-
versarial defense by k-winners-take-all,” arXiv preprint
arXiv:1905.10510, 2019.

https://proceedings.mlr.press/v80/athalye18b.html
https://proceedings.mlr.press/v80/athalye18b.html

	. Introduction
	. AutoAttack Structural Analysis
	. Adversarial Attacks
	. Attacks used in AutoAttack
	. Auto-PGD
	. Auto-PGD-Targeted

	. FAB and Square Attacks
	. AutoAttack Pipeline
	. Additional Heuristics

	. Experiments
	. Experimental Setup
	. Evaluation Metrics

	. Results

	. Conclusions and Future Work

