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Abstract: 
Cardiac segmentation is an important task to identify 

heart structures and assess cardiac function in medical imaging. 
Cardiac segmentation is primarily approached from an image 
domain perspective, using deep learning models to extricate 
and identify features not apparent to the human eye. Most 
efforts focus on improving performance at the model level, 
crafting deep learning models with specific configurations to 
tackle the unique task of cardiac segmentation. In this paper, a 
different approach is applied. Instead of model-level 
modifications, a pipeline consisting of two-stage detection 
involving cardiac localization and sub-structure detection is 
implemented, which then leads to cardiac sub-structure 
segmentation by applying the MedSAM foundation model. 
Overall, the pipeline achieves 91% and 88.5% accuracy for the 
left and right ventricle cavities, which are closely within 5% of 
the reported performance of SOTA model benchmarks, 
demonstrating the potential of foundational model for 
specialized tasks such as cardiac segmentation. 
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1. Introduction 

Cardiac segmentation is an important task to identify 

heart structures and assess cardiac function in medical 

imaging. Recent improvements in technology have rendered 

magnetic resonance (MR) as the gold standard for cardiac 

imaging due to better spatial resolution and tissue contrast. 
Cardiac MR segmentation is well-established task in the 

field of medical image processing, due to its important 

contribution in applications such quantifying cardiac 

function for disease diagnosis, monitoring and prognosis [1]. 
With the development of deep learning techniques, 

notable breakthroughs in the field of cardiac segmentation 

include the U-Net [2], a deep learning architecture consisting 

of a U-shaped encoding-decoding pathway with skip 

connections, which is excellent in capturing and retaining 

local information. Until today, the U-Net is still widely 

applied as the backbone model for cardiac segmentation 

tasks, implemented with variations and modifications to 

further enhance segmentation performance. 
A notable implementation is the nnU-Net by Isensee et 

al [3]. The nnU-Net features a self-configuring architecture 

of three different U-Nets, with parameters adapted to the 

characteristics of its input datasets. This resulted in state-of-

the-art (SOTA) performance and continues to be frequently 

referenced as a benchmark in cardiac segmentation tasks. 
Transformer variants [4] are also steadily gaining 

traction in cardiac segmentation tasks. Transformers are 

highly successful language learning models known for their 

ability to handle long-range dependencies, a capability the 

imaging community have adapted to capture global 

contextual information in visual tasks [5]. 
Qiu et al [6] employs the characteristics of the U-Net to 

craft an encoder-decoder network with skip connections, but 

replaces the convolutional layers with a novel spatially 

dynamic Transformer mechanism for feature extraction. The 

result is a model with better ability to capture features of 

target objects with diverse appearances, leading to improved 

model generalization and cardiac segmentation performance 

compared to other U-Net variants. 
Overall, it is observed that cardiac segmentation on MR 

images is primarily approached from an image domain 

perspective, using deep learning models to extricate and 

identify features not apparent to the human eye. Efforts often 

focus on improving performance at the model level, as the 

models are tailored with specific configurations to tackle the 

unique task of cardiac segmentation. 
While a well-crafted architecture is indeed important 

for deep learning tasks, the performance of a model is also 

significantly, if not more, impacted by the quality, quantity 



 

 

and diversity of the data input for training [7]. 
In the era of deep learning, access to large numbers of 

data has led to the rise of foundation models. Compared to 

specialized models tailored for certain tasks depending on 

their training data, foundation models showcase remarkable 

generalizing abilities due to being trained on massive 

amounts of data. In short, foundation models are large-scale 

pre-trained models which can be adapted to a wide range of 

downstream tasks with minimal task-specific modifications 

[8]. This is especially useful for the applications of tasks 

involving little to no data. 
A notable mention is MedSAM [8], adapted from a 

segmentation foundation model trained on more than a 

billion segmentation masks across 11 million images, then 

fine-tuned on more than a million medical image-mask pairs. 

MedSAM employs a vision transformer backbone with an 

encoder-decoder network which takes in both images and 

prompt points in the form of bounding box coordinates for 

object segmentation. While yet to be applied on cardiac 

segmentation, it has already outperformed most specialist 

models on different MR medical datasets.  
As MedSAM is a semi-automatic model, this paper thus 

aims to integrate the implementation of MedSAM into a 

fully-automated workflow for the application of cardiac MR 

segmentation.  
Rather than implementing model-level modifications, a 

fully-automated pipeline involving a two-stage cardiac 

detection with MedSAM is implemented. This paper aims to 

leverage the superior generalizing ability of foundation 

model to enable cardiac segmentation, which can be adapted 

for use in clinical workflows. 

2. Methodology 

2.1. Proposed Two-Stage Cardiac Segmentation Pipeline 

The heart is commonly captured as cross-sectional 

slices in the short-axis imaging plane, parallel to the oblique 

axial plane of the body. These slices are commonly identified 

as either basal, mid-cavity or apical, according to their 

position relative to the heart.  
The three sub-structures of the heart addressed in this 

paper are: the left ventricle cavity (LVC), left ventricle 

myocardium (LV MYO), and the right ventricle cavity 

(RVC), as these are the common sub-structures in cardiac 

MR segmentation tasks. 
From a human perspective, the observation of cardiac 

slices for segmentation occurs with the following steps: 
1. From the medical image, the heart is located. 
2. The slice position is determined based on the 

overall appearance of the heart. 
3. Each cardiac sub-structure is identified. 
4. The sub-structures are segmented according to 

their boundaries and differences in tissue contrast. 
Based on the steps mentioned above, the two-stage 

detection with foundation model pipeline is proposed, which 

 

FIGURE 1. Methodology of the Implemented Two-Stage Detection and Segmentation Pipeline 

 



 

 

consists of: 
1. Detection Stages I and II: 

I. Cardiac Localization— this localizes the 

heart from MR imaging and determines its 

position. 
II. Cardiac Sub-Structure Detection— the 

positions of LVC, LV MYO and RVC are 

then identified given the localized cardiac 

information from Stage I. 
2. Cardiac Segmentation— The sub-structures are 

segmented with aid from their identified positions.  
 For both stages of detection, the Ultralytics 

YOLOv11m object detection model [9] is chosen due to its 

lightweight and efficient nature, featuring an improved 

feature extraction compared to its series predecessors. 

Pretrained on the COCO dataset [10] consisting of more than 

300 thousand images and 200 thousand labels, YOLOv11m 

can generalize well to a diverse range of object detection 

tasks. This ability can be leveraged through transfer learning 

on cardiac images for the cardiac localization and sub-

structure detection tasks. 
For cardiac segmentation, the MedSAM foundation 

model is applied to obtain the segmentation masks of the 

individual image slices. 
An overview of the complete pipeline is shown in 

Figure 1, starting with the extraction of the MR images in 

NifTI format into individual image slices. The images are 

pre-processed before being passed into Detection Stage I, to 

identify the heart among the surrounding anatomical tissue. 
Once that is done, the non-cardiac regions are masked 

off. This is used to emulate how humans would “focus” on 

the heart to segment the cardiac sub-structures. It is also 

proposed that isolating the cardiac regions ensures better 

accuracy for the detection of each cardiac sub-structure. 
As the appearance of the heart is unique enough among 

the surrounding tissues, the detection model should be able 

to successfully identify its position among the surrounding 

tissues. However, each sub-structure may potentially be 

confused with the similar-appearing tissues surrounding it. 

This is due to their irregular shapes and appearances, which 

is expected to result in some detection inaccuracies if the 

heart is not initially isolated. 
Thus, the implementation of the two-stage detection 

ensures a safe-guard against inaccurate cardiac sub-structure 

identification. Once the position of each sub-structure is 

identified, the components can be brought forward for 

segmentation. 

2.2. Dataset 

In this paper, the Automated Cardiac Diagnosis 

Challenge (ACDC) dataset [11] is utilized. The ACDC 

dataset features a total of 150 subjects with 4 pathological 

and 1 control group. 20 patients of each group are provided 

as training data, and the rest are for testing purposes. The MR 

images are provided in NifTI format, featuring the cross-

sectional slices from the base to apex of the heart, captured 

across time. 
As the dataset is for a cardiac segmentation challenge, 

the ground truth (GT) segmentation masks for the LVC, LV 

MYO, and RVC sub-structures of each subject are also 

provided, but only at end-diastolic and end-systolic stage. 

2.3. Pre-processing 

In pre-processing, only the relevant cardiac slices with 

GT data are extracted. This results in 1,076 cardiac image 

slices from the training set and 1,001 cardiac image slices 

from the testing set. For training purposes, each image is 

normalized to [0-255] and resized to 640x640.  
To obtain the bounding box coordinates localizing the 

heart, a process is automated to draw a rectangle spanning 

the furthest points of the combined GT segmentation masks 

of LVC, LV MYO and RVC. The normalized center 

coordinates (𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟) , width 𝑤  and height ℎ  of 

the bounding boxes according to YOLO conventions are 

computed from the rectangle coordinates. The following 

procedure is computed as in Equations (1)-(9). 
Given the combined GT segmentation masks of LVC, 

LV MYO and RVC is denoted by 𝑀 for an image of height 

𝐻  and width 𝑊 , while 𝑀′  is the aggregated union of all 

three cardiac sub-structure segmentation masks: 
 𝑀 ∈ ℝ𝐻×𝑊                  (1) 

𝑀′ = 𝑀𝐿𝑉𝐶 ∪  𝑀𝑀𝑌𝑂 ∪  𝑀𝑅𝑉           (2) 
 R is the aggregated region of interest, defined as a set 

of pixel coordinates (𝑥, 𝑦): 
𝑅𝑀′ = {(𝑥, 𝑦) | 𝑀 (𝑥, 𝑦) > 0 }          (3) 

 

FIGURE 2. Cardiac localization bounding boxes and masking of the 

non-cardiac regions. From left to right: basal, mid-cavity and apical 

slice. 

 



 

 

Given that (𝑥1, 𝑦1)  and (𝑥2, 𝑦2)  denote the top left 

and bottom-right corners of the rectangle respectively, the 

YOLO-format bounding box conventions are as obtained:  
𝑥1 = min{𝑥 | (𝑥, 𝑦) ∈  𝑅𝑀′}           (4) 
𝑦1 = min{𝑦 | (𝑥, 𝑦) ∈  𝑅𝑀′}           (5) 
𝑥2 = max{𝑥 | (𝑥, 𝑦) ∈  𝑅𝑀′}           (6) 
𝑦2 = max{𝑦 | (𝑥, 𝑦) ∈  𝑅𝑀′}           (7) 

 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 =  
𝑥1+ 𝑥2

2𝑊
, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 =  

𝑦1+ 𝑦2

2𝐻
         (8) 

𝑤 =  
𝑥2−𝑥1

𝑊
, ℎ =  

𝑦2−𝑦1

𝐻
             (9) 

Similar to the cardiac localization, bounding box 

coordinates for each cardiac structure are obtained with the 

same automated process applied to draw rectangles spanning 

each cardiac sub-structure segmentation GT. 
The models for both detection stages were trained with 

YOLOv11m object detection models, initialized with the 

default COCO-pretrained weights. The training employs a 

ratio of 70%-30% train-validation split, utilizing the default 

AdamW optimizer, with 120 epochs and a batch size of 14. 
To improve model generalizability, the training data 

underwent the following image augmentations: flipping, 

rotation and noise addition up to 1.5% of total image pixels. 

2.4. Detection Stage I: Cardiac Localization 

As shown in Figure 2, cardiac slices differ in 

appearance, depending on their position. Thus, three main 

classes are assigned to identify them: basal, mid-cavity and 

apical. These classes are determined as according to [12]: 

basal and apical slices are determined by their position 

adjacent to the base and apex respectively, without the 

appearance of papillary muscles. The mid-cavity slices are 

those between the basal and apical, with the appearance of 

papillary muscles. 

2.5. Detection Stage II: Sub-structure Detection 

Making use of the cardiac localization coordinates, the 

areas outside the bounding box are masked off. This isolates 

the heart for the second stage of detection, while preserving 

the position of the heart within the image, shown in Figure 3.  
The three classes of cardiac sub-structures for detection 

are: LVC, LV MYO and RVC, where the GT bounding boxes 

surround. It is worth noting at this stage the detection of LV 

MYO class is essentially for the detection of the entire left 

ventricle as the myocardium tissue encases the cavity. 

2.6. Cardiac Segmentation Using Foundation Model 

With the obtained bounding box coordinates for each 

identified cardiac sub-structure, these are input into as 

prompts into MedSAM. The coordinates of the bounding 

boxes inform the model which regions are to be segmented. 
As the output, the segmentation masks for left and right 

ventricles can be immediately obtained, while some 

processing is required to obtain the LV MYO segmentation 

mask. MedSAM tends to only segment the LVC despite the 

input bounding box covering the entire left ventricle. This is 

likely due to the boundary line between LVC and LV MYO 

being quite apparent so that MedSAM just takes the LVC as 

the object of interest.  
To mitigate this, it is found by adjusting the image 

contrast and inverting the image enables MedSAM to 

segment the left ventricle as a whole. The contrast is adjusted 

using an adaptive histogram method called Contrast-Limited 

Adaptive Histogram Equalization (CLAHE) which is 

generally applied to increase contrast in images. 
CLAHE divides an image into equal regions known as 

tiles and enhances the contrast of each tile individually. This 
regularizes the local contrast across an image rather than 

causing uneven contrast, which may occur in traditional 

contrast enhancing methods. A tile size of 16x16 is employed 

 

FIGURE 3. GT bounding boxes for the detection of cardiac sub-

structures. From left to right: LVC, LV MYO and RVC. 

 

FIGURE 4. Processing steps involved to obtain final MYO 

segmentation mask. 



 

 

as it is observed that a larger tile size reduces the abrupt 

transition between image regions, such as the boundary line 

between LVC and LV MYO. This was found useful to enable 

MedSAM to segment the entire left ventricle. 
As observed in Figure 4, the LVC mask is then deducted 

from the obtained segmentation mask of the entire left 

ventricle to obtain the actual LV MYO segmentation. All 

three cardiac sub-structure segmentation masks are then 

resized back to the original cardiac slice dimensions as the 

final output. An example of the final segmentation outputs 

for LVC, LV MYO and RVC are shown in Figure 5.  

2.7. Evaluation Metrics 

To evaluate the performance of cardiac localization and 

sub-structure detection in Detection Stages I and II, the 

Intersection-Over-Union (IOU) metric (10) is utilized. IOU 

is a standard performance metric often employed for object 

detection tasks, which quantifies how well the bounding box 

region of predicted object overlaps the actual GT bounding 

box. 
 𝐼𝑂𝑈 (𝐺𝑇, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) =

 𝐴𝑟𝑒𝑎(𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

 𝐴𝑟𝑒𝑎(𝐺𝑇 ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
  (10) 

For cases of clinical applications like cardiac detection, 

an IOU above 85% is typically required to be considered 

good segmentation performance, as it indicates a strong 

overlap between prediction and GT. 
To evaluate the cardiac sub-structure end-segmentation 

results, the Sørensen-Dice Coefficient (DSC) is applied to 

quantify the similarity between GT and predicted 

segmentation masks (11). 
𝐷𝑆𝐶 (𝐺𝑇, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) =

2 ×𝐴𝑟𝑒𝑎(𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

 𝐴𝑟𝑒𝑎(𝐺𝑇 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
  (11) 

 Similar to IOU, DSC measures the overlap between the 

predicted region and GT. Unlike IOU, DSC places greater 

emphasis on the correctly predicted regions. DSC is often the 

preferred metric in clinical segmentation tasks, as it provides 

a more meaningful assessment in the presence of overall 

good alignment with minor discrepancies. 

3. Results  

The results of the segmentation pipeline are as 

presented in Table 1 and Table 2. Table 1 presents the 

detection performance for both cardiac detection stages of 

the implemented pipeline, while Table 2 shows the end 

performance from MedSAM model for each cardiac sub-

structure segmentation with the given cardiac sub-structure 

bounding box as input. 
For comparison purposes, all cardiac data used are from 

the provided testing set of the ACDC dataset. These, when 

extracting only cardiac slices with existing GT, sum up to a 

total of 1,001 cardiac image scans. 

TABLE 1. Cardiac localization and sub-structures result 

Detection Performance (IOU, %) 

Stage I: Cardiac Localization Stage II: Cardiac Sub-
structures Detection 

Basal Mid-
Cavity Apical Irrespective 

of Class LVC RVC LV 
MYO 

82.2 88.6 76.2 93.0 91.0 89.1 96.6 

 
While the detection accuracies for cardiac localization 

stage are all less than 90%, it is worth noting that, without 

the consideration of the class labels denoting the cardiac slice 

position, 990 out of 1,001 labelled data were successfully 

detected with a detection accuracy of 93%, showcasing 

satisfactory performance and reliability in localizing the 

cardiac structure. 

TABLE 2. Comparative studies with SOTA specialized 
and generalized cardiac segmentation models on the ACDC dataset 

Model 
Cardiac Sub-structures Segmentation  

Performance (DSC, %) 
LVC RVC LV MYO 

nnU-Net [3] 95.0 92.3 91.1 
Fully Convolutional 

Transformer [4] 95.9 92.6 90.5 

Transformer U-Net [6] 96.2 91.1 90.4 

MedSAM 91.0 88.5 69.8 

 
In terms of cardiac sub-structure detection, it is 

observed that the YOLOv11m detection model showcases 

satisfactory detection results of more than 90% IOU except 

for the RVC. In fact, the relatively poor detection 

performance for apical class in Stage I and RVC class in 

Stage II detection can be attributed to the very small 

appearances of the heart at the apex, and also the RVC in the 

basal and apical slices. 
From the obtained results, it is observed that the final 

segmentation results are approximately within 5% of the 

SOTA model performances, except for the case of LV MYO 

class. MedSAM can perform well on both LVC and RVC, 

while performance on the LV MYO is relatively poor. 

 

FIGURE 5. From left to right: Final segmentation output for LVC, 

LV MYO and RVC. 



 

 

4. Conclusion 

In this paper, a two-stage detection with foundation 

model pipeline is leveraged cardiac MR image segmentation. 

The pipeline is found to achieve satisfactory performances 

for LVC and RVC, while segmentation performance for the 

LV MYO is comparatively lower. This discrepancy is 

attributed to its ring-like appearance surrounding the LVC. 

Compared to the LVC and RVC which appear as singular 

masses, the LV MYO is more complex in structure. 
However, as the end-result of LV MYO segmentation is 

approaching 70%, it shows the application of MedSAM on 

segmenting cardiac sub-structures is promising, as prior 

demonstrations of MedSAM only extend as far as single-

mass objects. The foundation model itself is extensively fine-

tuned on medical datasets, where items of interest mainly 

appear as singular masses— these include organs such as the 

lungs, kidneys, and abnormal body growths like polyps, 

lesions and tumors. 
Furthermore, the instances of heart segmentation were 

only carried out on chest x-ray images. In such images the 

heart is observed as a single mass, rather than the cross-

sectional view offered in common cardiac MR imaging scans. 

By applying MedSAM on cardiac MR imaging scans, this 

work showcases the potential ability of cardiac sub-structure 

segmentation utilizing foundation model. Overall, LVC and 

RVC segmentation results yielded are close within 5% of 

SOTA specialized and generalized model benchmarks, while 

LV MYO segmentation shows promising results. 
Further work will focus on introducing image 

processing techniques such Gaussian Filtering to diffuse the 

boundary between LVC and LV MYO, in attempt to improve 

the LV MYO segmentation performance. 
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