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Abstract:
Sequence classification is a core task in computational genomics
with wide-ranging applications in gene regulation, functional an-
notation, and disease prediction. In this study, we propose a novel
hybrid deep learning architecture that combines Vision Trans-
formers (ViTs) with Convolutional Neural Networks (CNNs) for
classifying human non-TATA promoter sequences. To harness
the representational power of vision-based models, we introduce a
multi-channel Hilbert Curve encoding technique that transforms
linear DNA sequences into 2D image-like grids, spatially preserv-
ing k-mer relationships and regulatory motifs. This spatial re-
structuring enables CNNs to extract local features while allowing
ViTs to capture global dependencies via self-attention. Evaluated
on a balanced dataset of 36,131 promoter and non-promoter se-
quences (251 bp each), the proposed model achieves a validation
accuracy of 90.28%, along with strong precision and recall across
both classes. Our approach demonstrates that image-based se-
quence representation, when paired with hybrid architectures, of-
fers a powerful alternative to traditional sequence modeling.
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1. Introduction

Sequence classification is a widely explored problem with
applications across several domains, including genomics, time
series forecasting, intrusion detection, and natural language
processing. In the domain of genomics, it has played a vital
role in classifying DNA, RNA, or protein sequences, enabling
downstream tasks such as gene regulation analysis, disease as-
sociation studies, and functional annotation [1].

Traditionally, sequence classification methods are catego-
rized into three types: (1) feature-based classification, where
sequences are converted into feature vectors to apply conven-

tional classifiers; (2) distance-based classification, where simi-
larities among sequences are quantified and clustered accord-
ingly; and (3) model-based classification using probabilistic
models like Hidden Markov Models (HMMs) that learn sta-
tistical structures from sequences.

In recent years, deep learning methods— particularly
CNNs— have proven effective in learning local motif patterns
in biological sequences without the need for hand-engineered
features [2]. However, CNNs are inherently limited in cap-
turing long-range dependencies across nucleotides, which are
often crucial in identifying regulatory elements like promot-
ers. To address this limitation, researchers have explored
Transformer-based architectures, originally introduced for nat-
ural language processing, for their ability to model global con-
text using self-attention mechanisms [3].

This study introduces a hybrid deep learning framework
combining CNNs with ViTs for classifying human non-TATA
promoter sequences. CNN layers are employed to extract local
motifs and spatial features from 2D image-like representations
of DNA sequences generated using Hilbert Curve encoding,
which spatially reorganizes 1D nucleotide sequences into 2D
grids that preserve locality and structure. Stacked Transformer
encoder blocks are then applied to capture long-distance depen-
dencies among sequence elements. This integration enables a
more expressive and comprehensive representation of promoter
signals embedded within DNA. The goal of this work is to
develop a high-performing deep learning model for promoter
identification using an architecture capable of capturing both
localized motif patterns and long-range dependencies. While
the hybrid CNN–ViT model primarily focuses on maximizing
classification performance, its structured representation of spa-
tial and contextual features opens future avenues for enhanc-
ing interpretability. The model demonstrates strong potential
in preliminary tests and may be applicable to other sequence
classification tasks in computational biology.



2. Related Work

Deep learning models have increasingly become the foun-
dation for sequence classification tasks across multiple disci-
plines. Models such as CNNs, Long Short-Term Memory net-
works (LSTMs), and bidirectional LSTMs (BiLSTMs) have
been widely adopted in fields such as speech recognition, finan-
cial prediction, and bioinformatics [4, 5]. Specifically, CNNs
and feature-based architectures have shown remarkable effec-
tiveness in classifying genomic and proteomic sequences by
identifying local motifs and patterns within raw input data
[6, 7].

In the realm of genomic analysis, CNNs have been suc-
cessfully employed for promoter prediction, enhancer detec-
tion, transcription factor binding site classification, and chro-
matin accessibility modeling. For example, DeepBind and
DeepSEA demonstrated how CNNs could automatically ex-
tract high-resolution features from DNA sequences, reducing
the need for manual motif engineering [8]. Similarly, hybrid
methods that combine CNNs with LSTMs have been proposed
to model both local and contextual information in genomic
data. These methods, however, often struggle with capturing
long-range dependencies that span beyond the receptive field
of convolutional filters or recurrent memory limitations [6].

To overcome this, attention-based models—most notably
Transformer architectures—have been introduced. Originally
developed for natural language processing, Transformers have
demonstrated strong performance on sequence data due to their
ability to learn relationships across entire input sequences using
self-attention. Applications such as DNABERT, which adapts
BERT-style pretraining for DNA k-mer sequences, and En-
former, which models regulatory activity across thousands of
bases, underscore the growing impact of attention mechanisms
in genomics [9, 10].

Recent efforts have explored integrating CNNs with Trans-
formers into a unified framework. This hybrid architecture
leverages the local feature extraction capability of CNNs along-
side the global context modeling of Transformers [3]. Vision
Transformers, in particular, have become a promising solution
by treating genomic representations as images or patch-based
embeddings, making it possible to learn from both spatial and
sequential features simultaneously [11]. While ViTs are data-
hungry, they have been shown to outperform CNNs in some
domains when trained properly or combined with convolutional
preprocessing layers.

In the specific context of promoter classification, several
studies have tackled the challenge of distinguishing canonical
and non-canonical promoters. Non-TATA promoters, which do

not contain the traditional TATA box motif, are especially diffi-
cult to classify due to their sequence variability and subtle reg-
ulatory signals [12]. Traditional machine learning approaches
such as Support Vector Machines (SVMs) have been employed
with hand-crafted features, but scalability and generalizability
have remained concerns [13].

Our work contributes to this evolving landscape by propos-
ing a CNN + ViT hybrid model tailored for the classification
of non-TATA promoter sequences in the human genome. The
model is designed to effectively capture both short-range mo-
tifs and long-range dependencies, providing a comprehensive
representation of promoter characteristics. By using Hilbert
Curve encoded DNA sequences transformed into 2D images,
and applying convolutional layers followed by Transformer en-
coders, the model takes advantage of both inductive biases [14].
Furthermore, this study addresses not just the accuracy of pro-
moter classification but also its scalability. With over 36,000
sequences in the dataset, efficient learning and generalization
become essential. Preliminary results from our experiments
suggest that hybrid architectures of vision models may offer
a superior balance of performance and interpretability for reg-
ulatory element prediction, and represent a promising direction
for future genomic research.

3. Hybrid CNN ViT Model for DNA Classification

3.1. Background

Recent advancements in artificial intelligence, particularly
in deep learning, have significantly enhanced sequence-based
classification tasks, including applications in genomics [15].
CNNs have been widely used for analyzing spatial patterns in
image-like data, showing strong capabilities in learning local-
ized features. In genomic analysis, CNNs can effectively ex-
tract important motifs and short-range dependencies from se-
quence representations, enabling robust feature extraction with-
out manual engineering. On the other hand, ViTs leverage the
self-attention mechanism to model global dependencies across
input data sequences. The self-attention mechanism calculates
the relationships between all parts of the input simultaneously,
enabling the model to capture complex, long-range patterns that
CNNs may miss. Mathematically, the scaled dot-product atten-
tion can be defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where qi, ki, and vi, represent the ith rows of matrices Q, K,
and V respectively. Moreover, dk represents the dimensionality



of the input queries and keys, acting as a mechanism to mitigate
the potential computational instability caused by large inputs in
the attention function, thus ensuring computational stability.

It was discovered to be advantageous to linearly transform
the queries, keys, and values multiple times (denoted as h) us-
ing different learnable matrices, each with dimensions dk, dk,
and dv . Specifically, each set of these learnable matrices is re-
ferred to as a ”head,” and the transformer model incorporates
a Multi-head Self-Attention (MSA) layer. These output heads
are concatenated, as shown in equation (2), to create a unified
output that is then fed into the feed-forward layer. The feed-
forward layer, a multi-layer perception (MLP) network, aids
in identifying various features within the input sequence. This
structure significantly enhances performance and enables par-
allel processing of sequence data, particularly in Natural Lan-
guage Processing applications.

MSA(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

Recently, the transformer model has garnered significant in-
terest due to its exceptional performance in image process-
ing, particularly for classification purposes. Vision transform-
ers, operate by dividing an input image into patches and treat-
ing these patches as a sequence of linear embeddings. The
use of CNNs and transformers in this capacity represents a
cutting-edge approach in medical technology. In the context
of DNA sequence analysis, combining the local feature extrac-
tion power of CNNs with the global context modeling ability
of transformers provides a powerful hybrid architecture. The
CNN captures sequence motifs and short-range dependencies,
while the transformer captures relationships across distant re-
gions of the DNA sequence, leading to a more holistic under-
standing crucial for complex classification tasks.

3.2 Proposed Pipeline

The proposed hybrid framework integrates a custom Con-
volutional Neural Network (CNN) and a Vision Transformer
(ViT) to classify DNA sequences efficiently. The DNA se-
quences, specifically human non-TATA promoter regions, are
first converted into multi-channel Hilbert Curve image repre-
sentations. Each nucleotide (A, T, G, C) is one-hot encoded
into separate channels, and a fifth channel encodes the relative
position to the Transcription Start Site (TSS). This encoding
preserves both local sequence information and spatial organi-
zation critical for downstream analysis.

The custom CNN serves as the initial feature extractor, ap-
plying multiple convolutional and pooling layers to learn local

sequence patterns embedded in the Hilbert images. The CNN
architecture is tailored to effectively process the five-channel
input, extracting low-level spatial features across the encoded
sequence.

Once feature maps are generated by the CNN, they are parti-
tioned into fixed-size patches. Each patch is linearly embedded
into a high-dimensional vector space, and positional encodings
are added to maintain spatial relationships. These embeddings
are then fed into a transformer encoder composed of multi-head
self-attention layers and feed-forward networks. The trans-
former layers capture long-range dependencies across the en-
tire sequence, modeling complex genomic relationships.

The output of the transformer encoder is flattened and passed
through a multi-layer perceptron (MLP) head with GELU acti-
vation. A final classification layer with a softmax activation
function predicts whether the DNA sequence belongs to the
promoter class or not. Dropout layers are incorporated within
the MLP and transformer blocks to prevent overfitting.

Gaussian noise is added during training as a form of data
augmentation to improve model robustness. Furthermore, early
stopping based on validation loss is employed to halt train-
ing when overfitting is detected, ensuring a well-generalized
model.

This comprehensive pipeline captures both localized and
globalized features within DNA sequences, providing an effec-
tive framework for genomic sequence classification.

4. Experimental Results

In this section, the dataset specifics, preprocessing steps,
implementation details of the proposed model are provided
and discussed. Additionally, the experimental results are thor-
oughly examined, focusing on performance metrics and the
model’s effectiveness.

4.1. Dataset

Our study utilized the human non-TATA promoters dataset
from the genomic-benchmarks repository [16], which contains
36,131 DNA sequences of precisely 251 base pairs each. These
sequences span from -200 to +50 base pairs relative to the tran-
scription start site (TSS). The dataset comprises 14,742 pos-
itive samples (actual non-TATA promoters) and 12,355 neg-
ative samples in the training set, along with 4,915 positive
and 4,119 negative samples in the testing set, representing a
slight class imbalance ratio of 1.2:1. The negative sequences
were carefully constructed from random fragments of human
genes located after first exons to ensure biological relevance
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FIGURE 1. Proposed Pipeline

in the model’s discrimination task. Originally adapted from
Umarov and Solovyev’s 2017 research, this dataset is partic-
ularly valuable for studying promoter regions that lack the
canonical TATA-box motif, which constitute the majority of
human gene promoters and present unique challenges for com-
putational identification due to their diverse sequence charac-
teristics [17].

4.2. Implementation Detail

The proposed hybrid CNN–Vision Transformer model is im-
plemented using TensorFlow 2.17 with Keras [18]. The model
accepts multichannel 16×16×5 Hilbert-encoded DNA images
as input. All experiments were conducted on a Linux worksta-
tion using a single GPU. 1

To ensure that the model learns only from biologically rele-
vant inputs, a custom MaskingLayer is applied at the input
level. This layer masks out the 5 empty cells resulting from
encoding 251-bp sequences onto a 16 × 16 Hilbert grid. The
CNN pathway consists of convolutional blocks with Batch Nor-
malization, ReLU activations, and dropout regularization. It
includes enhanced residual blocks augmented with Squeeze-
and-Excitation (SE) mechanisms and a spatial attention mod-
ule. This pathway is responsible for extracting local motif-level
features from the spatial DNA representation.

The ViT pathway begins with a PatchExtract layer
that divides the image into 4 × 4 non-overlapping patches,
followed by a PatchEmbedding layer which projects
patches into a 64-dimensional embedding space. Two
stacked TransformerBlock layers are used, each consist-
ing of multi-head self-attention (MHSA), layer normalization,
dropout, and GELU-activated MLP blocks. A positional em-
bedding mechanism is integrated to maintain spatial structure

1A GitHub repository at Vision for Genomic Data has been developed, and
access can be granted upon request.

Input & Masking 16×16×5 Hilbert-encoded DNA “images,” with a 
custom MaskingLayer zeroing out fixed regions

CNN Backbone 
(Residual + SE + 
Spatial Attention)

Two enhanced residual blocks 
(Conv→BN→ReLU→Conv→BN + Squeeze-

Excitation + spatial-attention + skip connections 
+ Dropout).

Patch Extraction 
& Embedding

Split masked input into 4×4 patches, project 
each to a 64-dim vector + positional encoding.

Transformer 
Encoder

Two stacked TransformerBlocks 
(LayerNorm→Multi-Head Self-

Attention→MLP→residuals + Dropout + 
LayerNorm).

Feature Fusion & 
Pooling

Global average-pool the CNN map (128-dim) 
and transformer sequence (64-dim), then 
concatenate into a 192-dim feature.

Classification 
Head & Output

MLP 
(Dense→ReLU→Dropout→Dense→ReLU→Dropou) 
→ final Dense(1, sigmoid) producing the binary-
class probability.

FIGURE 2. Detailed Implementation Architecture

awareness across the patches.
The outputs from both pathways are processed by global

pooling layers (1D for ViT and 2D for CNN), concatenated,
and passed through a classification head comprising dense lay-
ers with dropout and L2 regularization. A final sigmoid acti-
vation is used for binary promoter classification.

The model has early stopping of 30 epochs, with a batch size
of 64 using the Adam optimizer and a fixed learning rate of
1 × 10−5. The binary cross-entropy loss is used along with
label smoothing to improve generalization. Class imbalance
is addressed using dynamically computed class weights based
on training label frequencies. To prevent overfitting and adap-
tively manage the learning rate, the following callbacks are em-
ployed:

• Early Stopping: Monitors validation AUC with a pa-
tience of 15 epochs.

https://github.com/lokesh-purohit/Deep-Vision-for-Genomic-Data


FIGURE 3. Training and validation accuracy and loss for the proposed
model

• ReduceLROnPlateau: Reduces the learning rate by a
factor of 0.5 when validation loss plateaus, with a mini-
mum threshold of 1× 10−7.

• Model Checkpointing: Saves the best model based on
validation AUC.

• TensorBoard Logging: Logs training metrics and weight
histograms for visualization.

4.3. Results and Discussions

The performance of the proposed hybrid ViT + CNN model
was evaluated on a dataset of 9,034 human DNA sequences
(4,915 promoters and 4,119 non-promoters). The model trained
for 30 epochs before the early stopping was triggered. Adam
optimizer was used with a learning rate scheduler, and conver-
gence was monitored via validation loss.

Figure 3 demonstrates that the model steadily improved its
performance, with training accuracy reaching approximately
95.5% and validation accuracy stabilizing around 91.5%. The
loss curves also show effective convergence, with both training
and validation loss decreasing significantly over time, indicat-
ing successful learning and generalization.

The confusion matrix in Figure 4 shows that the model cor-
rectly classified 3,584 non-promoter sequences and 4,572 pro-
moter sequences, with relatively few misclassifications (535
and 343, respectively). The overall test classification accuracy
was 90.28%. As detailed in Table 1, and according to the classi-
fication metrics, the model achieved strong performance across
both classes, as well.

FIGURE 4. Confusion matrix of the proposed model

Class Precision Recall F1-score Support
Non-promoter 0.9127 0.8701 0.8909 4119

Promoter 0.8952 0.9302 0.9124 4915
Accuracy 0.9028
Macro avg 0.9039 0.9002 0.9016 9034

Weighted avg 0.9032 0.9028 0.9026 9034

TABLE 1. Classification Metrics

These results suggest that the hybrid ViT-CNN architecture
is effective in learning both local and global patterns within ge-
nomic sequences. Its ability to distinguish promoter from non-
promoter sequences highlights its potential utility in broader
sequence classification tasks in computational biology.



5. Conclusions and Future Work

This study presents a hybrid deep learning model combining
CNNs and Vision Transformers (ViTs) to classify human non-
TATA promoter sequences. Using multi-channel Hilbert Curve
encoding, DNA sequences are transformed into 2D image-like
representations that preserve both local motifs and long-range
dependencies. The model achieved 95.5% training, 91.5% val-
idation accuracy, and 90.28% validation accuracy, demonstrat-
ing strong generalization. Future work will explore higher-
order Hilbert encodings and biologically enriched channels
to improve detection of subtle regulatory motifs, advancing
vision-based approaches in genomics.
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[10] Ž. Avsec, V. Agarwal, D. Visentin, J. R. Led-
sam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael,
J. Jumper, P. Kohli, and D. R. Kelley, “Effective gene
expression prediction from sequence by integrating long-
range interactions,” Nature methods, vol. 18, no. 10, pp.
1196–1203, 2021.

[11] H. Xu, Q. Xu, F. Cong, J. Kang, C. Han, Z. Liu, A. Mad-
abhushi, and C. Lu, “Vision transformers for computa-
tional histopathology,” IEEE Reviews in Biomedical En-
gineering, vol. 17, pp. 63–79, 2023.

[12] S. Menon, S. Piramanayakam, and G. Agarwal, “Compu-
tational identification of promoter regions in prokaryotes
and eukaryotes,” EPRA International Journal of Agricul-
ture and Rural Economic Research (ARER), vol. 9, no. 7,
pp. 21–28, 2021.

[13] D. Chicco, “Support vector machines in bioinformatics: a
survey,” Politecnico di Milano, Dipartimento di Elettron-
ica e Informazione, 2012.

[14] S. Anders, “Visualization of genomic data with the hilbert
curve,” Bioinformatics, vol. 25, no. 10, pp. 1231–1235,
2009.

[15] C. Ao, S. Jiao, Y. Wang, L. Yu, and Q. Zou, “Biologi-
cal sequence classification: A review on data and general
methods,” Research, vol. 2022, p. 0011, 2022.
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