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Abstract: 
The automation of chest X-ray report generation has emerged 

as a transformative area in medical imaging, with the potential to 
alleviate radiologists’ workload and enhance diagnostic accuracy 
and efficiency in healthcare. This paper presents a comprehen- 
sive survey of deep learning approaches aimed at automating the 
creation of clinical reports from chest X-rays, focusing on state-of- 
the-art methodologies, evaluation techniques, and real-world ap- 
plicability. 

To offer a holistic view the survey covers key model archi- 
tectures, including Convolutional Neural Networks (CNNs), 
Transformers, and multimodal frameworks, providing an 
in-depth exploration of their capabilities and limitations 
in medical report generation. Notably, models like ViT- 
GPT2 and ResNet101+Tranformer achieve promising results, 
with ViT-GPT2 reporting a BLEU-4 score of 0.2020 and 
ResNet101+Tranformer reporting a BLEU -3 Score of 0.1765 post 
the proposed novel report standardization. The paper examines 
publicly available datasets such as IU-X Ray and MIMIC-CXR, 
which serve as benchmarks for training and evaluating these 
systems, alongside commonly used assessment metrics. The 
paper underscores challenges inherent to these datasets, such as 
biases, limited clinical diversity, while also discussing strategies to 
address these issues. 

This survey highlights not only the progress made in this field 
but also the gaps and unresolved questions like clinical relevance 
and practical concerns that hinder widespread adoption. By syn- 
thesizing insights from existing studies, this work aims to guide re- 
searchers, clinicians, and developers in advancing the field of AI- 
driven chest X-ray report generation. It also identifies promising 
directions for future research and development, contributing to 
the broader goal of enhancing radiological practice and improving 
patient outcomes through trustworthy and effective AI solutions. 
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1 Introduction 
 

Chest X-rays have emerged as critical diagnostic tool used to 
detect thoracic conditions such as pneumonia, tuberculosis, and 
COVID-19 due to their accessibility, low cost, and quick re- 
sults [1, 2]. Their utility in early disease detection, particularly 
in emergency and resource-limited settings, was evident during 
the COVID-19 pandemic, where they played a key role in pa- 
tient triage and monitoring [3]. Studies have shown their high 
diagnostic accuracy for diseases like tuberculosis and pneumo- 
nia, reinforcing their role in global health initiatives [4]. 

However, manual interpretation of chest X-rays is time- 
consuming and reliant on radiologist expertise as shown in Ta- 
ble 1. Rising imaging volumes [5] and radiologist shortages 
have led to delays [4, 6], diagnostic errors, and widespread 
burnout [7].These challenges have driven the need for auto- 
mated, accurate, and efficient reporting systems. 

TABLE 1. Radiologists per 100,000 population across countries 
 

Country Radiologists per 100,000 
Ghana 0.2 
India 1.0 
Singapore 7.6 
United Kingdom 9.9 
United States of America 12.5 
Europe 13.0 
Organisation for Economic Co-operation and Development (OECD) Average 12.8 

 
AI, from early CAD [8] systems in the 1960s to modern 

deep learning, has shown promise in improving diagnostic 
workflows by delivering impressive performance in interpret- 
ing medical images and generating clinical reports [9, 10]. 
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Real-world deployments like the qXR v2.1 software that 
has analyzed over 1.3 million chest X-rays across 33 UAE 
visa screening centers, achieving a 99.92% Negative Predictive 
Value with 88.2% of surveyed radiologists reported reduced 
turnaround times, and 82% saw improved diagnostic accuracy 
which validate the progress in this domain [11, 12]. 
Our key contributions are: 

• A comparative technical study of state of the art CNN+ 
Stacked LSTM, ResNet+Transformer, and ViT+GPT-2 ar- 
chitectures. 

• Quantitative and qualitative analysis using BLEU, 
ROUGE, and METEOR metrics. 

• Standardization techniques for consistent medical termi- 
nology in report generation. 

• Assess practical applications of AI in radiology work- 
flows. 

• Highlight key challenges, including burnout and reporting 
delays 

• Discussion of real-world deployment challenges and ethi- 
cal considerations. [7, 11, 12]. 

 
2 Literature Survey 
 

Exploration in the field of chest X-ray report generation re- 
quires a thorough investigation of the key concepts, including 
datasets, the evolution of algorithmic approaches, and the eval- 
uation metrics that measure the performance and clinical rele- 
vance of these systems. 

 
1. Domain: 

Chest X-ray report generation is often framed as a special- 
ized form of image captioning, wherein the goal is to generate 
descriptive text summarizing key clinical findings from radio- 
graphic images. Early efforts in this domain adopted convo- 
lutional neural networks (CNNs) for visual feature extraction 
and recurrent neural networks (RNNs) for sequence genera- 
tion [13, 14]. These systems, while effective at generating brief 
descriptions, struggled with medical coherence and failed to 
capture region-specific abnormalities or inter-sentence depen- 
dencies. For instance, early CNN-RNN models generated sen- 
tence fragments that often lacked clinical depth or diagnostic 
accuracy [15]. 

To mitigate these shortcomings, hierarchical LSTM archi- 
tectures were introduced to better model the report’s struc- 
tural complexity by capturing both word- and sentence-level 
dependencies. These methods led to improved report quality 
by generating longer, semantically richer descriptions and cap- 
turing more nuanced clinical contexts [16]. Attention mech- 
anisms further enhanced performance by enabling the models 
to selectively focus on salient image regions, aligning visual 
and textual features more effectively. The integration of self- 
attention and cross-attention modules marked a pivotal shift to- 
wards more clinically coherent report generation [7]. 

Building on these foundations, transformer-based archi- 
tectures have emerged as the dominant paradigm. Vision- 
Language Models (VLMs) unify image understanding and lan- 
guage generation within a shared embedding space and have 
demonstrated robust performance in tasks like visual question 
answering and radiology report generation. Recent adaptations 
like the Medical-VLBERT [17] and MATNet [18] highlight the 
effectiveness of combining medical knowledge and visual cues 
through alternate learning strategies and multimodal transform- 
ers. However, these models often require extensive datasets and 
may overfit when trained on small-scale clinical corpora. 

Hybrid models that combine retrieval and generation offer a 
promising direction for improving flexibility and accuracy. For 
example, the Hybrid Retrieval-Generation Reinforced Agent 
[15] dynamically chooses between retrieving template sen- 
tences and generating novel ones, using reinforcement learning 
to optimize decision-making and enhance clinical fluency. Sim- 
ilarly, AIMNET [19] employs adaptive mechanisms to balance 
visual and textual inputs, reducing bias and improving align- 
ment with radiological findings. 

Knowledge-grounded models also play an important role. 
Approaches such as ”When Radiology Report Generation 

Meets Knowledge Graph” [20] incorporate domain-specific on- 
tologies to guide report generation. While effective at improv- 
ing interpretability, such models may struggle with adaptability 
due to their dependence on static medical knowledge graphs. In 
contrast, newer frameworks such as dynamic graph-enhanced 
contrastive learning [21] leverage evolving graph structures to 
align image-report pairs more flexibly, addressing domain drift 
and dataset shifts. 

Another innovation involves the integration of strong en- 
coders like ConvNeXt in conjunction with biomedical language 
models such as BioBERT. The CNX-B2 model [22] exem- 
plifies this hybrid CNN-Transformer approach, showing supe- 
rior performance across standard benchmarks like BLEU, ME- 
TEOR, and CIDEr. Likewise, models such as Improving Chest 
X-Ray Report Generation by Leveraging Warm Starting [23] 
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demonstrate how initializing from pretrained vision and lan- 
guage checkpoints, including ViT and PubMedBERT, can en- 
hance convergence and output quality. 

Moreover, recent advancements like the Memory-Guided 
Transformer [24] address limitations in traditional transform- 
ers by incorporating spatio-semantic visual extractors. These 
networks are capable of fine-grained feature localization and 
better semantic reasoning, crucial for accurate clinical report 
generation. The use of deformable attention and semantic en- 
coders allows such models to generalize well across different 
radiographic patterns and datasets. 

Other contributions, such as the GRU-based encoder- 
decoder framework [25], although simpler, have been explored 
for their efficiency and adaptability. Models like S4M [26] 
further broaden the scope by generalizing report generation 
across multiple body parts, relying on cross-modal alignment 
and body-part specific features. 

Together, these developments illustrate a dynamic and 
rapidly evolving research landscape. The trajectory from early 
CNN-RNN systems to sophisticated transformer-based models 
reflects a consistent drive toward generating clinically mean- 

 

 
 
FIGURE 1. An example of a chest X-ray with its associated report from 
IU-XRAY 
 

 
computed as: 

ingful, coherent, and accurate medical reports. As architectures 
grow in complexity and incorporate retrieval, multimodal at- 
tention, domain knowledge, and memory-guided mechanisms, 
the field continues to push toward higher diagnostic utility and 

 
BLEU = BP × exp 

N 

 
n=1 

wn log pn

! 

(1) 

real-world applicability. 

 
2. Dataset Used 

The Indiana University - X ray dataset more popularly 
known as IU-Xray Dataset [27], a widely used publicly avail- 
able dataset, contains 7,470 chest X-ray images along with cor- 
responding radiology reports from 3,955 unique patients. The 
number of images for every unique patient varies from 1 to 4, 
most patients have 2 images, 1 corresponding for each chest 

BLEU is effective for syntactic accuracy but has limi- 
tations in capturing semantic meaning and clinical rele- 
vance. 

 
• ROUGE-L (Recall-Oriented Understudy for Gisting 

Evaluation - Longest Common Subsequence): Pro- 
posed by Lin, ROUGE-L evaluates the longest com- 
mon subsequence (LCS) between generated and reference 
texts, emphasizing sequence-level matching. It computes: 

X-ray view. These reports are comprehensive, including sec- 
tions such as findings, impression, and caption, which guide the 
model in learning the relationship between visual abnormalities 

ROUGE-L = 
LCS(X, Y ) 

|Y | 
(2) 

in X-rays and the appropriate textual descriptions. 

 
3. Evaluation Metrics 

Automated report generation in healthcare requires metrics 
that assess both natural language quality and clinical accuracy. 
Common evaluation metrics include: 

• BLEU (Bilingual Evaluation Understudy): BLEU, in- 
troduced by Papineni et al., measures the precision of n- 
gram overlaps between generated and reference texts. It is 

ROUGE-L better captures sentence-level fluency and co- 
herence compared to simple n-gram overlap. 

 
3 Methodology 
 

This study presents three distinct approaches to medical re- 
port generation using deep learning models. Each approach 
was designed to investigate the potential of different architec- 
tures and techniques in generating coherent and informative 
medical reports. 



 
 
 

A. CNN + Stacked LSTM Network 

The first study employed a Convolutional Neural Network 
(CNN) [28] combined with stacked Long Short-Term Memory 
(LSTM) [29] network to generate medical reports. 

The CNN, DenseNet121 [30]pretrained on CheXpert [31], 
was used as a feature extractor, processing the input data into 
a compact representation that was then fed into the LSTM unit 
for sequential text generation. This architecture was inspired by 
previous work on natural language generation tasks, where the 
CNN was used to extract features from images and the LSTM 
provided temporal dependencies between words [32]. 

The input data for this study consisted of reports annotated 
with relevant information such as text descriptions. Each report 
was preprocessed by representing each word in the vocabulary 
using pretrained GloVe word embeddings (300d). The reports 
were split into training, validation, and testing sets following a 
75:15:10 split. 

A two-level Stacked LSTM network model was trained on 
the training set to learn the relationship between the visual fea- 
tures and the textual report. The model iteratively processed 
the word embeddings and the feature vector, using the knowl- 
edge gained at each step to predict the next word in the report 
sequence. During training, the loss function used was cross- 
entropy loss for sequence prediction, and the Adam optimizer 
with a learning rate of 10−4 was employed. 

The performance of the model on the validation set was 
monitored to prevent overfitting, and training stopped after 10 
epochs when the validation loss plateaued. The generated re- 
ports were evaluated using BLEU Score and ROUGE Score 
metrics. 

In some cases, the model generated incomplete or inconsis- 
tent reports due to missing or ambiguous information in the X- 
rays. This was particularly evident when critical features were 
unclear in the images, impacting the overall coherence of the 
generated text. 

The combination of DenseNet-121 and GloVe embeddings 
worked well in extracting both visual and textual features, lead- 
ing to coherent and contextually accurate reports. The LSTM 
decoder helped effectively map the image features to the text. 
The model also showed higher BLEU and ROUGE scores for 
cases with two associated X-rays, indicating the importance of 
multiple views. 

B. ResNet101 + Transformer 

The second study investigated the use of a ResNet101 [33] 
pre-trained model as a feature extractor, followed by a Trans- 
former [34] encoder for text generation. This architecture was 

 

 
 

FIGURE 2. Ground truth and sample output generated by the 
DenseNet121 + Stacked LSTM model . 

 

 
inspired by previous work on image-to-text tasks, where the 
ResNet101 was used to extract visual features from images 
and the Transformer provided efficient processing capabilities. 
The ResNet101 employed in this study consisted of 50 convo- 
lutional layers with batch normalization and ReLU activation 
functions. The output from the last layer was then fed into a 
Transformer encoder with 6 layers, each consisting of an at- 
tention mechanism and fully connected feed-forward networks. 
The number of self-attention heads used in the Transformer was 
set to 8. During our experimentation we realised the varying 
linguistics in the reports present, thus text standardization was 
carried out wherein the synonym vocabulary provided by do- 
main experts was used to replace synonyms with standardized 
medical terms, ensuring consistency in tone, vocabulary, and 
structure across generated reports. Each report was tokenized 
using the NLTK library [35] and preprocessed by removing re- 
dundant information and normalizing the text to lowercase. The 
preprocessed reports were then split into training (80%) and 
testing sets (20%). 

The model was trained using the Adam optimizer with a 
learning rate of 0.001, and the loss function used was cross- 
entropy loss between the predicted output and the true labels. 
The performance of the model was evaluated using BLEU, 
ROUGE-L, and METEOR metrics. 

Effectively representing large radiology images with patch- 
level features while retaining contextual information proved 
challenging. Additionally, balancing relational memory up- 
dates with the complexity of integrating memory-driven nor- 
malization layers in the decoder added further difficulty. An- 
other challenge was mitigating variations in sentence structure, 
vocabulary, and tone to ensure that the generated reports re- 
mained coherent and consistent. 

Using ResNet101 for patch feature extraction resulted in 
robust and discriminative visual embeddings, improving the 
model’s ability to generate accurate reports. The incorpora- 
tion of relational memory allowed for dynamic context-aware 
updates, leading to more coherent multi-sentence reports. To 



 
 
 
address challenges with diverse vocabulary and inconsistent 
phrasing, a report-standardization step was introduced, lead- 
ing to significant improvements in BLEU and ROUGE scores. 
This step enhanced alignment with reference texts and in- 
creased overlap in critical n-grams and phrases, streamlining 
outputs and improving clinical relevance. Quantitative eval- 
uation demonstrated significant improvements in BLEU and 
ROUGE scores, with clinical assessments confirming strong 
alignment with expert-annotated data. 

 

 
FIGURE 3. Ground truth and sample output generated by the ResNet101 
+ Transformer. 

 

 

 
 

FIGURE 4. Ground truth and sample output generated by the ResNet101 
+ Transformer with Standardized Reports. 

 
 
 
C. ViT + GPT-2 
 

The third study explored the use of a Vision Transformer 
(ViT) [34] to generate medical report summaries. This archi- 
tecture was inspired by previous work on vision-to-text tasks, 
where the ViT was used to extract visual features from images 
and the GPT-2 provided efficient processing capabilities. The 
ViT employed in this study consisted of 12 self-attention lay- 
ers with a hidden state size of 128. The output from the last 
layer was then fed into a GPT-2 decoder with 24 layers, each 
consisting of an attention mechanism and fully connected feed- 
forward networks. 

The input data for this study consisted of medical reports an- 
notated with relevant information such as patient demograph- 
ics, diagnosis, and treatment plans. Each report was tokenized 

using the NLTK library [35] and preprocessed by removing re- 
dundant information and normalizing the text to lowercase. The 
preprocessed reports were then split into training (80%) and 
testing sets (20%). 

The model was trained using the Adam optimizer with a 
learning rate of 0.001, and the loss function used was cross- 
entropy loss between the predicted output and the true labels. 
The performance of the model was evaluated using BLEU, 
ROUGE-L, and METEOR metrics. A key highlight of the 
training pipeline was the integration of synonym standardiza- 
tion during preprocessing. This step played a pivotal role in im- 
proving the consistency of input data, leading to notable gains 
in evaluation metrics. By unifying semantically similar expres- 
sions, the model achieved better alignment with reference re- 
ports and improved coherence in the generated outputs demon- 
strated the value of targeted preprocessing enhancements in ra- 
diology report generation tasks. 
 
 

 
FIGURE 5. Ground truth and sample output generated by the ViT + GPT- 
2. 

 
 
 

 
4 Results 

 
We evaluate three model architectures across key metrics to 

understand their strengths and limitations in radiology report 
generation. The results demonstrate how architectural design 
and preprocessing choices influence learning dynamics and re- 
port quality. 

 
A. CNN + Stacked LSTM 

 
The CNN + Stacked LSTM model generated reports that 

captured basic observations but often lacked clinical detail. 
BLEU and ROUGE scores reflected moderate alignment with 
references, revealing limitations in handling long-range depen- 
dencies and diverse terminology. 



 
 

 

  
FIGURE 6. Training loss for CNN + Stacked LSTM model. 

FIGURE 8. Training loss for ResNet101 + Transformer. 
 
 
 
 

 
 
 

FIGURE 7. Validation BLEU scores for CNN + Stacked LSTM model. 
 
 
 
 
 

 
B. ResNet101 + Transformer 
 
 
 

 
This model outperformed the CNN + LSTM approach, gen- 

erating more coherent and structured multi-sentence reports. 
Report standardization improved vocabulary consistency and 
yielded higher BLEU, ROUGE, and METEOR scores. 

FIGURE 9. Training loss after report standardization. 
 
 
 

 
FIGURE 10. BLEU score before and after standardization. 



 
 
 

C. ViT + GPT-2 
 

 
The ViT + GPT-2 model excelled at capturing global con- 

text and generating detailed, structured narratives. A synonym- 
standardization step further improved scores, and this model 
achieved the highest performance across all metrics. 
 
 

FIGURE 11. Training loss for ViT + GPT-2. 
 
 
 

 

FIGURE 12. Validation BLEU scores for ViT + GPT-2. 
 
 

 
D. Comparative Analysis 
 

 
Figure 13 shows BLEU score comparisons across all mod- 

els. ViT + GPT-2 led overall, followed by the standardized 
ResNet101 + Transformer. CNN + LSTM trailed, highlighting 
the advantage of transformer-based vision-language models. 

 

 
FIGURE 13. BLEU score comparison across ViT + GPT2, CNN + 
Stacked LSTM and ResNet101 + Transformer. 

 
The sample outputs (Figure 14) illustrate qualitative differ- 

ences, with ViT + GPT-2 producing the most clinically accurate 
and coherent descriptions. 
 

 
FIGURE 14. Qualitative comparison of generated reports across CNN + 
Stacked LSTM, ResNet101 + Transformer and ViT + GPT2 illustrating 
differences in clinical accuracy and coherence 

 
This figure underscores the progressive improvement in re- 

port generation with increasingly sophisticated architectures, 
demonstrating how advanced vision-language models like ViT 
+ GPT-2 enable more clinically relevant and precise outputs, 
aligning better with expert standards. 
 

TABLE 2. Performance comparison of BLEU scores for different models 
 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 
DenseNet121 + Stacked LSTM 0.2920 0.1795 0.1114 0.0521 
ResNet101 + Transformer 0.4157 0.2468 0.1680 0.1231 
ResNet101 + Transformer with Standardized Reports 0.4077 0.2539 0.1765 0.1294 
ViT + GPT-2 0.5430 0.3650 0.2870 0.2020 

 
5 Related Work 
 

The use of pretrained language models has significantly ad- 
vanced automatic chest X-ray (CXR) report generation, espe- 
cially those adapted to biomedical and radiological domains. 
These models typically serve as encoders or decoders in multi- 
modal systems, improving both the linguistic and clinical qual- 
ity of generated reports. 



 
 
 

5.1 General-Purpose vs. Domain-Specific Language 
Models 

 
Initial work in this area leveraged general models such as 

BERT [36] and GPT-2 [37], which, despite their versatility, 
struggle with medical language due to vocabulary mismatches 
and lack of domain exposure [38]. 

Domain-adapted variants like BioBERT [38] and Clinical- 
BERT [39] addressed this by continuing BERT’s training on 

biomedical and clinical texts. However, since they retain 
BERT’s original vocabulary, they are limited in handling spe- 
cialized radiological terms [40]. 

 
5.2 PubMedBERT 

 
PubMedBERT [41] was trained from scratch on over 18 

billion biomedical tokens from PubMed and PMC, using a 
domain-specific tokenizer. This enables more accurate repre- 
sentation of medical terms and improved performance across 
biomedical NLP tasks. Its alignment with clinical language 
makes it a strong candidate for initializing decoders in CXR 
report generation pipelines [42]. 

 
5.3 RadBERT 

 
RadBERT [43], in contrast, is trained solely on 2.7 million 

radiology reports across modalities like X-ray, CT, and MRI. 
Its vocabulary and tokenizer, derived entirely from radiology 
text, better capture the abbreviated and telegraphic style of 
such reports. It outperforms general and biomedical models 
on radiology-specific tasks like semantic similarity and natural 
language inference, making it well-suited for radiology report 
generation. 

 
5.4 Implications for Report Generation 

 
PubMedBERT and RadBERT highlight the value of domain- 

specific pretraining. While PubMedBERT supports broader 
biomedical understanding, RadBERT offers specialized adap- 
tation to radiological language. Incorporating these mod- 
els—either as warm-start encoders or within hybrid architec- 
tures—can improve the accuracy, coherence, and clinical va- 
lidity of automated CXR reports [42, 43]. Future studies may 
benefit from directly comparing these models in full-generation 
pipelines for radiology. 

6 Conclusion 
 

This study examined the development and evaluation of au- 
tomated radiology report generation systems, leveraging deep 
learning advancements across vision and language domains. 
Starting from foundational architectures like DenseNet121 
+ Stacked LSTM, we iteratively explored more sophisti- 
cated models such as ResNet101 + Transformer and Vision- 
Language Transformers (VLMs), observing substantial im- 
provements in evaluation metrics like BLEU, ROUGE, and 
CIDEr. The ViT + GPT-2 model consistently outperformed 
earlier approaches, highlighting the power of tightly coupled 
vision-language modeling. However, despite these gains, there 
remains notable room for improvement in contextual fluency, 
clinical accuracy, and interpretability of generated reports. 

Beyond model design, this work emphasizes the importance 
of data quality, clinical relevance, and trust in AI-driven sys- 
tems. Academic research in this area not only drives innova- 
tion but also plays a crucial role in enhancing diagnostic work- 
flows, supporting radiologists, and promoting clinical educa- 
tion. As the field evolves, future directions should focus on 
fine-tuning VLMs for richer contextual understanding, integrat- 
ing dynamic knowledge graphs for up-to-date medical insight, 
and leveraging ensemble learning for region-specific radiology 
tasks. There is also great potential in addressing dataset limi- 
tations through self-supervised and federated learning, and ex- 
tending model capabilities across modalities like CT and MRI. 
Additionally, embedding explainability and uncertainty quan- 
tification will be key to building clinician trust and facilitating 
real-world deployment. 

Ultimately, automated report generation stands at the inter- 
section of AI innovation and clinical impact. With careful at- 
tention to model robustness, ethical considerations, and prac- 
tical integration, these systems can become valuable tools for 
enhancing diagnostic accuracy, improving healthcare delivery, 
and supporting medical professionals in delivering better pa- 
tient outcomes. 
 
References 
 

[1] M. S. Ahmed, A. Rahman, F. AlGhamdi, S. AlDakheel, 
H. Hakami, A. AlJumah, Z. AlIbrahim, M. Youldash, 
M. A. Alam Khan, and M. I. Basheer Ahmed, “Joint di- 
agnosis of pneumonia, covid-19, and tuberculosis from 
chest x-ray images: A deep learning approach,” Diagnos- 
tics, vol. 13, no. 15, p. 2562, 2023. 

[2] M. S. Ahmed, A. Rahman, F. AlGhamdi, S. AlDakheel, 
H. Hakami, A. AlJumah, Z. AlIbrahim, M. Youldash, 



 
 
 

M. A. Alam Khan, and M. I. Basheer Ahmed, “Joint di- 
agnosis of pneumonia, covid-19, and tuberculosis from 
chest x-ray images: A deep learning approach,” Diagnos- 
tics, vol. 13, no. 15, p. 2562, 2023. 

[3] G. Liu, T.-M. H. Hsu, M. McDermott, W. Boag, W.-H. 
Weng, P. Szolovits, and M. Ghassemi, “Clinically accu- 
rate chest x-ray report generation,” in Machine Learning 
for Healthcare Conference, pp. 249–269, PMLR, 2019. 

[4] N. Stec, D. Arje, A. R. Moody, E. A. Krupinski, and 
P. N. Tyrrell, “A systematic review of fatigue in radiol- 
ogy: is it a problem?,” American Journal of Roentgenol- 
ogy, vol. 210, no. 4, pp. 799–806, 2018. 

[5] M. Winder, A. J. Owczarek, J. Chudek, J. Pilch- 
Kowalczyk, and J. Baron, “Are we overdoing it? changes 
in diagnostic imaging workload during the years 2010– 
2020 including the impact of the sars-cov-2 pandemic,” 

in Healthcare, vol. 9, p. 1557, MDPI, 2021. 

[6] T. Malikowski, M. Mahmood, T. Smyrk, L. Raffals, and 
V. Nehra, “Tuberculosis of the gastrointestinal tract and 

associated viscera,” Journal of clinical tuberculosis and 
other mycobacterial diseases, vol. 12, pp. 1–8, 2018. 

[7] C. X. Y. Goh and F. C. H. Ho, “The growing problem of 
radiologist shortages: perspectives from singapore,” Ko- 
rean Journal of Radiology, vol. 24, no. 12, p. 1176, 2023. 

[8] P. H. Meyers, C. M. Nice Jr, H. C. Becker, W. J. Net- 
tleton Jr, J. W. Sweeney, and G. R. Meckstroth, “Auto- 
mated computer analysis of radiographic images,” Radi- 
ology, vol. 83, no. 6, pp. 1029–1034, 1964. 

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” 
nature, vol. 521, no. 7553, pp. 436–444, 2015. 

[10] Y. Huang, H. Xue, B. Liu, and Y. Lu, “Unifying multi- 
modal transformer for bi-directional image and text gen- 
eration,” in Proceedings of the 29th ACM International 
Conference on Multimedia, pp. 1138–1147, 2021. 

[11] A. A. Mohamed AlJasmi, H. Ghonim, M. E. Fahmy, 
A. M. Nair, S. Kumar, D. Robert, A. A. Mohamed, H. Ab- 
dou, A. Srivastava, and B. Reddy, “Post-deployment per- 
formance of a deep learning algorithm for normal and ab- 
normal chest x-ray classification: A study at visa screen- 
ing centers in the united arab emirates,” Available at SSRN 
4905858. 

[12] C. J. Liew, P. Krishnaswamy, L.-T. Cheng, C. H. Tan, 
A. C. Poh, and T. C. Lim, “Artificial intelligence and radi- 
ology in singapore: championing a new age of augmented 
imaging for unsurpassed patient care,” Ann Acad Med Sin- 
gapore, vol. 48, no. 1, pp. 16–24, 2019. 

[13] K. O’Shea, “An introduction to convolutional neural net- 
works,” arXiv preprint arXiv:1511.08458, 2015. 

[14] A. Sherstinsky, “Fundamentals of recurrent neural net- 
work (rnn) and long short-term memory (lstm) network,” 

Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 
2020. 

[15] Y. Li, X. Liang, Z. Hu, and E. P. Xing, “Hybrid retrieval- 
generation reinforced agent for medical image report gen- 
eration,” Advances in neural information processing sys- 
tems, vol. 31, 2018. 

[16] B. Jing, P. Xie, and E. Xing, “On the automatic gen- 
eration of medical imaging reports,” arXiv preprint 
arXiv:1711.08195, 2017. 

[17] G. Liu, Y. Liao, F. Wang, B. Zhang, L. Zhang, X. Liang, 
X. Wan, S. Li, Z. Li, S. Zhang, et al., “Medical-vlbert: 
Medical visual language bert for covid-19 ct report gen- 
eration with alternate learning,” IEEE Transactions on 
Neural Networks and Learning Systems, vol. 32, no. 9, 
pp. 3786–3797, 2021. 

[18] C. Shang, S. Cui, T. Li, X. Wang, Y. Li, and J. Jiang, 
“Matnet: Exploiting multi-modal features for radiol- 
ogy report generation,” IEEE Signal Processing Letters, 
vol. 29, pp. 2692–2696, 2022. 

[19] J. Shi, S. Wang, R. Wang, and S. Ma, “Aimnet: Adap- 
tive image-tag merging network for automatic medical 
report generation,” in ICASSP 2022-2022 IEEE Interna- 
tional Conference on Acoustics, Speech and Signal Pro- 
cessing (ICASSP), pp. 7737–7741, IEEE, 2022. 

[20] Y. Zhang, X. Wang, Z. Xu, Q. Yu, A. Yuille, and 
D. Xu, “When radiology report generation meets knowl- 
edge graph,” in Proceedings of the AAAI conference on 
artificial intelligence, vol. 34, pp. 12910–12917, 2020. 

[21] M. Li, B. Lin, Z. Chen, H. Lin, X. Liang, and X. Chang, 
“Dynamic graph enhanced contrastive learning for chest 

x-ray report generation,” in Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 
pp. 3334–3343, 2023. 



 
 
 
[22] A. Saporta, X. Gui, A. Agrawal, A. Pareek, S. Q. Truong, 

C. D. Nguyen, V.-D. Ngo, J. Seekins, F. G. Blankenberg, 
A. Y. Ng, et al., “Benchmarking saliency methods for 

chest x-ray interpretation,” Nature Machine Intelligence, 
vol. 4, no. 10, pp. 867–878, 2022. 

[23] A. Nicolson, J. Dowling, and B. Koopman, “Improv- 
ing chest x-ray report generation by leveraging warm 
starting,” Artificial intelligence in medicine, vol. 144, 
p. 102633, 2023. 

[24] P. Divya, Y. Sravani, C. Vishnu, C. K. Mohan, and Y. W. 
Chen, “Memory guided transformer with spatio-semantic 
visual extractor for medical report generation,” IEEE 
Journal of Biomedical and Health Informatics, 2024. 

[25] W. Akbar, M. I. U. Haq, A. Soomro, S. M. Daudpota, 
A. S. Imran, and M. Ullah, “Automated report generation: 
A gru based method for chest x-rays,” in 2023 4th Inter- 
national Conference on Computing, Mathematics and En- 
gineering Technologies (iCoMET), pp. 1–6, IEEE, 2023. 

[26] Q. Chen, Y. Xie, B. Wu, M.-S. To, J. Ang, and Q. Wu, 
“S4m: Generating radiology reports by a single model for 
multiple body parts,” arXiv preprint arXiv:2305.16685, 
2023. 

[27] D. Demner-Fushman, M. D. Kohli, M. B. Rosenman, 
S. E. Shooshan, L. A. Rodriguez, D. Milentijevic, 
E. Apostolova, S. Antani, G. R. Thoma, and C. J. McDon- 
ald, “Preparing a collection of radiology examinations for 
distribution and retrieval,” Journal of the American Med- 
ical Informatics Association, vol. 23, no. 2, pp. 304–310, 
2016. 

[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein- 
berger, “Densely connected convolutional networks,” in 

Proceedings of the IEEE conference on computer vision 
and pattern recognition, pp. 4700–4708, 2017. 

[29] A. Sherstinsky, “Fundamentals of recurrent neural net- 
work (rnn) and long short-term memory (lstm) network,” 

Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 
2020. 

[30] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein- 
berger, “Densely connected convolutional networks,” in 

Proceedings of the IEEE conference on computer vision 
and pattern recognition, pp. 4700–4708, 2017. 

[31] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, 
C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpan- 
skaya, et al., “Chexpert: A large chest radiograph dataset 

with uncertainty labels and expert comparison,” Proceed- 
ings of the AAAI Conference on Artificial Intelligence, 
vol. 33, pp. 590–597, 2019. 

[32] B. Jing, P. Xie, and E. Xing, “On the automatic gen- 
eration of medical imaging reports,” arXiv preprint 
arXiv:1711.08195, 2017. 

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn- 
ing for image recognition,” in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 
pp. 770–778, 2016. 

[34] A. Dosovitskiy, “An image is worth 16x16 words: Trans- 
formers for image recognition at scale,” arXiv preprint 
arXiv:2010.11929, 2020. 

[35] E. Loper and S. Bird, “Nltk: The natural language 
toolkit,” arXiv preprint cs/0205028, 2002. 

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: 

Pre-training of deep bidirectional transformers for lan- 
guage understanding,” in Proceedings of the 2019 confer- 
ence of the North American chapter of the association for 
computational linguistics: human language technologies, 
volume 1 (long and short papers), pp. 4171–4186, 2019. 

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 
I. Sutskever, et al., “Language models are unsupervised 

multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019. 

[38] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and 
J. Kang, “Biobert: a pre-trained biomedical language rep- 
resentation model for biomedical text mining,” Bioinfor- 
matics, vol. 36, no. 4, pp. 1234–1240, 2020. 

[39] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, 
D. Jin, T. Naumann, and M. McDermott, “Pub- 
licly available clinical bert embeddings,” arXiv preprint 
arXiv:1904.03323, 2019. 

[40] E. Lehman, S. Jain, K. Pichotta, Y. Goldberg, and B. C. 
Wallace, “Does bert pretrained on clinical notes reveal 

sensitive data?,” arXiv preprint arXiv:2104.07762, 2021. 

[41] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, 
T. Naumann, J. Gao, and H. Poon, “Domain-specific 
language model pretraining for biomedical natural lan- 
guage processing,” ACM Transactions on Computing for 
Healthcare (HEALTH), vol. 3, no. 1, pp. 1–23, 2021. 



 
 

 
[42] A. Nicolson, J. Dowling, and B. Koopman, “Improv- 

ing chest x-ray report generation by leveraging warm 
starting,” Artificial intelligence in medicine, vol. 144, 
p. 102633, 2023. 

[43] A. Yan, J. McAuley, X. Lu, J. Du, E. Y. Chang, A. Gen- 
tili, and C.-N. Hsu, “Radbert: adapting transformer-based 
language models to radiology,” Radiology: Artificial In- 
telligence, vol. 4, no. 4, p. e210258, 2022. 


	LIKITHA P1, KRISH S SHAH1, KSHITIJ AGARWAL1, MAANASA GOWDA1, SHARATH VISHWANATH2
	Abstract:
	Keywords:
	1 Introduction
	Our key contributions are:

	2 Literature Survey
	1. Domain:
	2. Dataset Used
	3. Evaluation Metrics

	3 Methodology
	A. CNN + Stacked LSTM Network
	B. ResNet101 + Transformer
	C. ViT + GPT-2

	4 Results
	A. CNN + Stacked LSTM
	B. ResNet101 + Transformer
	C. ViT + GPT-2
	D. Comparative Analysis

	5 Related Work
	5.1 General-Purpose vs. Domain-Specific Language Models
	5.2 PubMedBERT
	5.3 RadBERT
	5.4 Implications for Report Generation

	6  Conclusion
	References

