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Abstract: 
Alzheimer’s disease (AD) destroys brain cells and can even 

cause death in older people. Therefore, diagnosis in the early 
stages is essential for proper treatment. Computer-aided diagnosis 
based on machine learning has become an accessible and suitable 
tool. However, the majority of traditional models focus on binary 
classification and utilize multi-step architectures, which are 
intricate and heavily reliant on human experts. This paper 
presents deep architectures that eliminate the need for 
handcrafted feature generation and significantly improve the 
process for accurate diagnosis. We design and train several 
enhanced convolutional neural networks (CNNs) based on transfer 
learning (TL) using smaller datasets to analyze neuroimaging 
scans and classify them into different AD stages. These CNNs are 
tested on the ADNI and OASIS benchmark datasets and found to 
outperform the best TL methods with regard to accuracy, 
precision, recall, f1-score and area under the ROC curve. The 
results show that NASNetLarge achieves finest performance, 
outperforming comparative models such as NASNet-Mobile, 
Inception-ResNetV2, and InceptionV3. 
 
Keywords:  

Deep learning; Computer-aided diagnosis system; CNNs 
architectures; Brain images processing; Alzheimer’s disease 

 
1.    Introduction 
 

Alzheimer’s disease (AD) is a growing and deadly 
neurological disorder. Eventually, AD demolish the part of the 
brain that manages cardiac and respiratory functions, which 
leads to death. The symptoms are not visible for years until the 
patient reaches an advanced stage. Thus, diagnosis of AD at an 
early stage contributes to appropriate treatment and prevention 
of brain tissue damage. 

Computer-aided diagnosis (CAD) based on artificial 
intelligence  (AI) has become an accessible and suitable tool in 
medicine owing to its translucent decision-making and 
reasonable cost. Despite distinguishing AD, it stays an 

ambitious task in computer vision areas, but the AI sub-branch 
of machine learning (ML) offers techniques that can 
significantly improve the process of obtaining accurate 
information for AD diagnosis. However, most CAD systems in 
the literature are based on multi-step architectures, which are 
hard  and greatly controlled by human experts. Besides, these 
systems are designed for binary classification. 
To tell the difference between healthy controls (HC) and people 
in different early stages of AD, we need new models that are 
based on deep knowledge and a lot of experience.  

This paper presents an effective automated CAD system 
based on robust deep learning (DL) architectures. The 
following are our primary contributions: (1) We started with the 
idea that it was vital to create architectures capable of training 
useful features from small neuroimaging databases. To achieve 
this, we used newer convolutional neural networks (CNNs) 
architectures, which are efficient in transfer learning (TL) and 
allow faster training of models. (2) We designed the pretrained 
models InceptionV3 [1], Inception-RestNetV2 [2], as well as 
NASNet-Mobile and NASNetLarge [3], trained on the 
ImageNet dataset [4], to analyze the two neuroimages 
commonly used in AD diagnosis, namely structural magnetic 
resonance imaging (sMRI) and fluorodeoxyglucose positron 
emission tomography (FDG-PET). (3) The most challenging 
datasets, Alzheimer's Disease Neuroimaging Initiative (ADNI) 
and Open Access Series of Imaging Studies (OASIS), undergo 
rigorous tests using various experimental settings. (4) We 
propose CNN models to classify brain images into three major 
stages for ADNI: HC, mild cognitive impairment (MCI), and 
AD, and into four stages for OASIS: HC, very mild impairment 
(eMCI), MCI, and moderate (AD). 

The the paper is structured as follows: In Section 2, related 
works are presented in brief. Section 3 summarizes deep CNN 
architectures, while Section 4 describes validation studies to 
assess the efficiency of the proposed model. Section 5 gives 
closing remarks and forthcoming experience. 



2.    Related work 
 

Scientists have developed various CAD systems for precise 
AD diagnosis using conventional ML and DL models. Aversen 
et al. [5] analyzed sMRI data using dimensional reduction and 
variation methods. The researchers have utilized binary and 
multi-class classifiers based on support vector machines to 
distinguish AD images from the ADNI database. Hybrid DL 
architecture was established for the early-stages diagnosis of 
AD [6], and enhanced CNNs were presented for AD diagnosis 
applying multimodal neuroimaging data [7]. Yu et al. proposed 
a generative adversarial network based on semi-supervised 
learning, tensor-train, and high-order pooling [8]. Several 
scientists have developed CNN architectures for feature 
extraction and used conventional ML models for  AD 
classification [9]. Moreover, a 3D-CNN architecture was used 
jointly with MRI data [10]. A multi-instance  DL architecture 
based on dual-attention was proposed for local and global 
feature extraction and then to develop a CAD system [11]. 
Finally, a Monte Carlo ensemble artificial neural network was 
developed for AD diagnosis using 2D images from various 
datasets [12]. 

Medical image data provides feature vectors for training 
conventional ML models. Human experts are required to 
extract the features, which often requires a significant 
investment of time, labor and funds. With the progress of DL 
framework, it is now possible to perform a feature extraction 
just from the images without human intervention. Therefore 
scientists are concentrating on developing DL architectures for 
precise AD diagnosis.   

DL has shown a prominent result for medical analysis, 
however there is modest contributions for diagnosis of AD. On 
the other hand, the development of robust deep neural networks 
requires a lot of images. Generally, neuroimaging datasets, and 
especially our datasets, contain fewer images for training. We 
leveraged the predictive capabilities of various CNN models 
pre-trained by transfer learning in our system. This strategy 
proved advantageous in overcoming the lack of sufficient 
image databases. 

 
3.    Material and method 
 
3.1.   Data acquisition 
 

The experiments were performed on the sMRI and DFG-
PET images acquired from the ADNI (adni.loni.usc.edu) and 
OASIS (oasis-brains.org). For each type of scan, we used 813 

(belonging to 459 male and 354 female subjects) for the first 
dataset and 416 (168 male and 248 female subjects) for the 
second. OASIS subjects range in age from 18 to 96 years old, 
and the age range of the ADNI subjects was between 60 − 90 
with a mean of 75.83 and a standard deviation of 6.07.  

We used a clinical dementia rating (CDR) scale to control 
the dementia status of the dataset; a score of 0 on the scale 
indicates a normal cognitive level, and a score greater than 0 
but less than 2 indicates mild impairment and finally, a score of 
2 or higher determines moderate Alzheimer's. In this context, 
we split the images into 187 AD, 228 HC, and 398 MCI for 
ADNI, and 300 HC, 70 eMCI, 28 MCI, and 18 AD for OASIS. 

Many slices of scans were collected from each subject for 
precise classification of different stages of the disease. The 
middle slices enclose further tissue than the border slices. 
Hence, tissues present a biomarker for dementia; central slices 
help the CAD system to accurately classify AD. Therefore, they 
are used for training. Fig.1 shows some sample images of HC 
and AD patients. 

 
FIGURE 1. Samples of MRI and PET images:  

HC (top-row), AD (bottom-row) 
  
3.2.     Preprocessing 
 

We used the statistical parametric mapping (SPM8) tool 
[13] to partially correct spatial intensity inhomogeneities. 
Origin of the raw sMRI scans was set manually to anterior 
commissure before manually registering them with SPM’s 

canonical T1 template image. We applied the N3 (non-
parametric non-uniform intensity normalization) technique to 
solve the tissue intensity non-uniformity problem [14]. Then 
the hybrid median filter was employed to remove impulse noise 
while preserving edges. Each slice of sMRI includes 256 × 256 



× 176 voxels covering the entire region of the brain with the 
following parameters: Voxel size is 2 × 2 × 2 mm3 for ADNI 
and 2 × 3.1 × 2 mm3 for OASIS; Isotropic resolution is 1.0 mm; 
time of repetition is 5050 ms; time of echo is 10 ms. All slices 
of reconstructed PET images are resampled to contain 256 × 
256 × 207 voxels with a voxel size of 1.2 × 1.2 × 1.2 mm3. 
 
3.3.    Classification 
 

We generated additional data from sMRI and FDG-PET 
images to train the deep models, thereby enhancing the 
robustness of our predictions. In this regard, data augmentation 
was applied to our datasets to increase the number of samples 
in the training dataset to avoid overfitting in CNN networks. 
We mainly achieved the augmentation by flipping the images 
horizontally, rotating them by a certain degree, rescaling 
(resizing) them in the range of [0, 1], and applying min-max 
normalization. 

We used CNN models, already trained with TL, to classify 
people at different stages of AD. Our datasets could thus 
exploit the knowledge of ImageNet [4]. We pass the pre-
processed images to each pre-trained model, which transforms 
each input into an output with building a hierarchy of features 
starting with simple low-level features and going to complex 
high-level features. As network architectures, we applied 
InceptionV3 [1]and Inception-RestNetV2 [2] as well as two 
variants of NASNet architecture [3] based on reinforcement 
learning and recurrent network  which are NASNet-Mobile, and 
NASNetLarge. 

 
TABLE 1. The hyperparameters of the four CNNs used for the experiment 

* The NASNet-Mobile and NASNetLarge CNNs do not consist of a linear 
sequence of modules. 

 
For the first CNN model, we provide obvious empirical 

evidence that training with residual connections expedites the 
training of Inception CNN considerably. The second network is 
developed using the original baseline weights of ImageNet 
dataset and entirely fine-tuning all network layers to estimate 
the root mean square error  and inference time for prediction. 
Data, using a recurrent neural network, informed the latest two 
models, unlike other pre-trained models entirely designed by 

humans. The hyperparameters of each CNN are presented in 
Table 1. 

Each architecture has many layers which achieve four 
fundamental operations: convolution, batch normalization, 
rectified linear unit, and pooling. The network layers track  a 
specific connection pattern namely dense connectivity, where 
each layer is connected to every other layer. The final 
classification is performed via a softmax layer which contains 
three (ADNI samples) or four (OASIS samples) different 
output classes. 

The CNN model takes an MRI or PET image as input and 
generates the corresponding learned features.  This allows the 
image to be classified into one of the network’s output classes. 
We applied cross entropy loss function to estimate the loss of 
each network. The learned features, 𝑓𝑖  are considered by the 
Softmax layer which transliterates them to the output class. 
Furthermore, a probability score 𝑠𝑖  is  entrusted to the output 
class whose formula as follows.  

 

𝑠𝑖 = 𝑒𝑥𝑝(𝑓𝑖) ∑ 𝑒𝑥𝑝(𝑓𝑖)

𝑛

𝑖=1

⁄  
(1) 

𝜖 = − ∑ 𝑔𝑖𝑙𝑜𝑔(𝑠𝑖)

𝑛

𝑖=1

 
(2) 

 
where n  is the number of AD stages and 𝜖 is the loss of cross 
entropy of the network. Back propagation is used to calculate 
the gradients of the network. If the ground truth of an input 
image is denoted as 𝑔𝑖, then: 
 

𝜕𝜖 𝜕𝑓𝑖 = 𝑠𝑖 − 𝑔𝑖⁄  (3) 
 
5-fold cross validation is performed since the dataset is 

small. For each fold, a split ratio of 70:30 was used for the 
training and test sets. We took 10% data from the training 
dataset to produce the validation dataset. Test data were used to 
measure the model's behavior with previously unseen data. This 
makes it possible to evaluate the goodness of the trained CNN 
models in order to improve them. We optimize the models 
using the stochastic gradient descent algorithm and use early-
stopping for regularization. 

 
4.    Results 

 
We used the statistical indices, namely true positives, false 

positives, false negatives, and true negatives, to compute five 

Neural network Depth Size Param Image  Size 
InceptionV3 48 89 MB 23.9 299-by-299 
Inception-ResNetV2 164 209 MB 55.9 299-by-299 
NASNet-Mobile * 20 MB 5.3 224-by-224 
NASNetLarge * 332 MB 88.9 331-by-331 



performance metrics for quantitative evaluation, including 
accuracy (Acc), precision (Prc), recall (Rec), f1-score (F1), and 
area under the ROC curve (Auc) score. Figures 2 to 5 present 
the classification performances of the four proposed models on 
ADNI and OASIS datasets for sMRI and FDG-PET images, 
respectively. 

The NASNetLarge CNN achieves finest performance for 
classifying different stages of AD compared to other models. 
This model works very well to classify both MRI and PET 
neuroimaging data. For ADNI images, the performances in 
term of accuracy are: MRI (90.8, 85.3, 94.3) % and PET (91.6, 

80.5, 90.3) % for AD, MCI and HC stages respectively. The 
same finding for OASIS images, the Accuracy results are: MRI 
(96.5, 88.6, 85.7, 97.2) % and PET (91, 85.3, 84.1, 90.2) % for 
AD, MCI, eMCI, and HC stages respectively. Figures 6 and 7 
present ROC curves obtained with the DL classifiers for the 
multi-class classification of all stages.  

The results obtained are statistically significant with a p-
value of 0.019, lower than the alpha significance threshold 
(confidence level). This ensures the significant difference 
between patients with AD and healthy subjects. 
 

FIGURE 2. Multi-class classification performance for sMRI test data from ADNI dataset 
 

FIGURE 3. Multi-class classification performance for FDG-PET test data from ADNI dataset 
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FIGURE 4. Multi-class classification performance for sMRI test data from OASIS dataset 

 

 

 

 

 

 

 

 

 
FIGURE 5. Multi-class classification performance for FDG-PET test data from OASIS dataset 

 
Thus, although this type of network provided adequate 

performance for the classification of non-demented and AD 
stages, there is still much to be done to improve the diagnosis 
of patients with very mild or mild impairment. To overcome 
this limitation, it will be reasonable to train CNN with a dataset 
that contains more samples of patients with dementia. 

Inception-RestNetV2 and NASNet-Mobile have already 
demonstrated outstanding performance in comparison with the 
InceptionV3 baseline model. Nevertheless because of the lack 
of sufficient training data, both CNNs suffered overfitting 
which caused a performance degradation in classifying 
different AD stages. 

 

   
FIGURE 6. ROC curves obtained with DL classifiers for ADNI multi-class classification of HC, MCI, and AD stages 
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FIGURE 7. ROC curves obtained with DL classifiers for OASIS multi-class classification of HC, eMCI, MCI, and AD stages 

  
5.    Conclusion 
 

A CAD system is decisive for the early diagnosis of AD 
and thus for planning the appropriate treatment for patients 
suffering from this disease. In this paper, some recent and 
improved pre-trained CNNs based on TL are designed and 
trained with smaller datasets to analyze neuroimaging scans. 
The suggested CNN models can identify early stages of AD 
and favourably classify sMRI and FDG-PET images from 
OASIS and ADNI challenging datasets into different stages.  

We demonstrated that using hyper-parameters from a very 
deep image classifier pre-trained with ImageNet can aid feature 
learning from small dataset. In this context, NASNetLarge 
performed better than the baseline models Inception-ResNetV2, 
NASNet-Mobile, and InceptionV3. The application of transfer 
learning enabled this network to handle small-scale medical 
data well. In addition, the joint use of MRI and PET brain 
images, as well as the comparative evaluation of some of the 
most popular deep models currently available, improves the 
strength and generalizability of finding. 

Whereas most existing studies focuses on binary 
classification, the proposed CNN architectures provided 
significant enhancement to multi-class classification. We tested 
the proposed models only on AD datasets, but we believe they 
can successfully address other classification problems in the 
medical domain. 
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