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Abstract:
This paper presents a fast swing-up control method for inertia

wheel pendulum systems based on motion planning. Firstly,
perform a state transformation using the system property
of differential flatness, and transform the motion planning
problem between the initial point and the target point in the
state space into a curve interpolation of the differential flatness
output with relevant boundary conditions satisfied. Then, a
polynomial interpolation approach is adopted to derive the
optimization problem for minimum-time motion planning, which
is solved based on the bisection method and particle swarm
optimization algorithm to obtain the minimum-time motion
trajectory. On that basis, the system’s dynamic characteristics
and non-minimum phase property are thoroughly analyzed to
design an effective trajectory tracking controller for tracking
the reference optimal trajectory, thus the fast swing-up con-
trol of the inertia wheel pendulum system can be achieved.
Finally, the proposed method is verified with simulation test
and compared with a direct swing-up controller without mo-
tion planning. The test results demonstrate the feasibility and
superiority of the proposed method, and the swing-up time
under related system constraints can be decreased significantly.
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1. Introduction

The inertia wheel pendulum system has two degrees of free-
dom, i.e., the swing of the pendulum and the rotation of the
inertia wheel, but only one control input, namely, the driving
torque of the inertia wheel, and the swing of the pendulum is
driven by the rotation of the inertia wheel, indirectly [1]. As for
a typical underactuated system [2], the inertia wheel pendulum

can not only be used a benchmark to research various nonlin-
ear control theories [3], but also has rich engineering applica-
tion prospects in several fields, such as ground transportation,
aerospace, and industrial automation[4]. Consequently, iner-
tia wheel pendulum systems have attracted extensive attention
from both academia and industry.

Belascuen et al. [5] studied design methods of the iner-
tia wheel pendulum system, and explored the optimization of
its mechanical structure under given drive motors and inertia
wheel diameter to increase the system’s recovery angle. Sub-
sequently, Su et al. [6] derived the dynamic model of the in-
ertia wheel pendulum using the Lagrangian modeling method
and proposed a finite difference discretization model for the
identification of system parameters, as well as some simula-
tion results to verify the effectiveness of the proposed approach.
Furthermore, Sureshkumar et al. [7] achieved a reconfigurable
inertia wheel pendulum device by adjusting the pendulum’s
center of mass and analyzed stability conditions under various
center-of-mass parameter configurations. Additionally, Meri et
al. [8] addressed the estimation accuracy issue for the pen-
dulum’s angular velocity affected by the measurement noise,
they compared the function of a reduced-order estimator and a
differentiator in system stabilization, and the results show that
the reduced-order state estimator performs better in both tran-
sient and steady-state conditions. The aforementioned stud-
ies primarily focus on aspects such as system structure de-
sign, dynamic modeling, stability analysis, and state estima-
tion, but control methods for the inertia wheel pendulum was
not explored in-depth, particularly the critical issue of effec-
tive swing-up control still requires the corresponding solution
methods.

To fixed this problem, Srinivas et al. [9] proposed two prac-
tical swing-up control methods, where the first method treated
the pendulum’s oscillation as a perturbation from the bottom
equilibrium point, and the second one is based on the intercon-



nection and damping assignment to achieve passivity control,
and both methods exhibit faster response characteristics com-
pared to energy-based control schemes. Afterwards, Sowman
et al. [10] designed a high-performance nonlinear model pre-
dictive controller for the swing-up control of the inertia wheel
pendulum system, and derived an explicit version to solve the
problem of the real-time computational limitations, thus the
precise approximation for the required control inputs is realized
and the effective compromise between real-time performance
and accuracy can be carried out. Furthermore, Montoya et al.
[11] investigated classical control methods for the inertia wheel
pendulum system, such as PID control and state feedback con-
trol, with the stability of their proposed controllers being an-
alyzed based on Lyapunov theory, and control laws were de-
signed to ensure global asymptotic stability of the closed-loop
system, thus effective control of the pendulum from arbitrary
initial positions to the desired upright position can be achieved.
Although these methods exhibit good performance in swing-
up control of the inertia wheel pendulum system, improving
swing-up control efficiency remains an open problem.

In view of this, a motion planning-based swing-up control
method for the inertia wheel pendulum system is proposed
in this study. By fully considering the system’s motion con-
straints, the minimum-time motion trajectory planning is per-
formed, and a tracking controller for the planned trajectory is
designed based on the analysis of the system’s non-minimum
phase characteristics, thus the swing-up control efficiency can
be improved. The remainder of the paper is organized with
the following structure. Section 2 describes the swing-up con-
trol problem of the inertia wheel pendulum system, and the
minimum-time motion planning is given in Section 3. After-
wards, Section 4 designs the corresponding trajectory tracking
controller to realize the fast swing-up control of the pendulum.
Finally, the feasibility and superiority of the proposed method
are validated in Section 5 through simulation test, and valuable
conclusions are provided in Section 6.

2. Problem Description

To analyze the motion of the inertia wheel pendulum system,
its dynamic model is firstly established. As shown in Fig.1, the
inertia wheel pendulum system primarily consists of a pendu-
lum arm and an inertia wheel, and the torque generated by the
rotation of the inertia wheel acts on the pendulum arm, which
drives the swinging motion of the pendulum. Therefore, using
the Euler-Lagrange modeling approach, the system’s dynamic
equations can be derived as follows

m11θ̈1 +m12θ̈2 + c(θ1) = 0 (1)

m21θ̈1 +m22θ̈2 = τ (2)

where m11 = m1l
2
1+m2l

2
2+I1+I2, m12 = m21 = m22 = I2,

c(θ) = −(m1l1 +m2l2)gsinθ1, m1 and m2 denote the masses
of the pendulum arm and the inertia wheel, respectively, I1 and
I2 denote the moments of inertia for the pendulum arm and
the inertia wheel, respectively, l1 and l2 represent the distances
from the mass centers of the pendulum arm and the inertia
wheel to the pivot point, respectively, τ represents the output
torque of the reaction wheel’s drive motor, θ1 is the angle of
the pendulum arm, and θ2 is the rotation angle of the inertia
wheel.
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FIGURE 1. Schematic diagram of the inertia wheel pendulum system

Assume that the pendulum angle is θ1(t0) and the inertia
wheel angle is θ2(t0) at the initial time t0, respectively. For
clarity and without loss of generality, let the initial moment
when the system swing be the time zero, thus the initial val-
ues of the pendulum angle θ1 and the inertia wheel angle θ2
satisfy

θ1(t0) = θ1(0) = θ01 (3)

θ2(t0) = θ2(0) = 0 (4)

where θ01 represents the initial value of the pendulum angle.
To achieve the swing-up of the system successfully, the pen-

dulum angle should arrive the upright position after time tf , and
the final values of the pendulum angle and the inertia wheel an-
gle satisfy.

θ1(tf) = 0, θ2(tf) = θf2 (5)

where θf2 represents the inertia wheel angle after the system’s
swing-up. Since the specific value of this variable does not af-
fect the swing-up process of the system, no specialized control
is required.



Moreover, to ensure a smoother start and finish of the swing-
up process, the angular velocities of both the pendulum and the
inertia wheel are set to zero at the initial and final moments,
thus we have

θ̇1(0) = θ̇1(tf ) = 0 (6)

θ̇2(0) = θ̇2(tf ) = 0 (7)

Additionally, taking actuator constraints into account, the an-
gular velocities of the pendulum and the inertia wheel should
satisfy the following limits

|θ̇1(t)| ≤ θ̇max
1 , |θ̇2(t)| ≤ θ̇max

2 (8)

where θ̇max
1 and θ̇max

2 represent the maximum allowable an-
gular velocities for the pendulum swing and the inertia wheel
rotation, respectively.

In summary, the problem of fast swing-up for the inertia
wheel pendulum system can be formulated as follows: for a
given θ01 ∈ (0, θ01max), find the control input τ that minimizes
the motion time required for the system to move from the ini-
tial state (3) and (4) to the upright state (5) with the system
motion constraints (6)-(8) being satisfied, thereby realize the
fast swing-up motion.

3. Minimum-time Motion Planning

From the system dynamics equations (1) and (2), it can be
concluded that the inertia wheel pendulum system exhibits typ-
ical underactuated characteristics, which lacks of a direct con-
trol input corresponding to the pendulum angle, and its motion
planning must rely on the nonlinear coupling relationship be-
tween the pendulum swing and the inertia wheel rotation. To
this end, this study uses the differential flatness property of the
system to perform state transformation, and converts the plan-
ning of inertia wheel pendulum state variables into a problem
of planning for flat outputs to be solved.

3.1. State Transformation

Equation (1) can be further expressed in the following state-
space equation form

ẋ = f(x) + g(x)u (9)

where x = [θ1 θ̇1 θ2 θ̇2]
T, f(x) = [θ̇1 J1 sin θ1 θ̇2 0]

T, g(x) =
[0 J2 0 1]T, J1 = (m1l1 +m2l2)g/m11, J2 = −I2/m11, and
u = θ̈2.

Analysis reveals that the aforementioned system is a differ-
ential flat system with the following equation [12] as its flat
output

y = h(x) = θ1 − J2θ2 (10)

Based on the above analysis, let ξ = [ξ1 ξ2 ξ3 ξ4]
T, and the

following coordinate transformation being adopted

ξi = ϕi(x) = Li−1
f h(x), i = 1, 2, 3, 4 (11)

The system (11) can be further transformed into the follow-
ing form 

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = p(ξ) + q(ξ)u

(12)

where ξ1 = θ1 − J2θ2, ξ2 = θ̇1 − J2θ̇2, ξ3 = J1sinθ1, ξ4 =
J1θ̇1cosθ1, q(ξ) = J1J2cosθ1, and p(ξ) = −J1θ̇

2
1sinθ1 +

J2
1 sinθ1cosθ1.
The mapping relationship between the differential flat output

states and the original system states is

θ1 = arcsin

(
ξ3
J1

)
(13)

θ̇1 =
ξ4

J1
√

1− (ξ3/J1)2
(14)

θ2 =
1

J2
[arcsin(ξ3/J1)− ξ1] (15)

θ̇2 =
1

J2

[
ξ4

J1
√
1− (ξ3/J1)2

− ξ2

]
(16)

We focus on studying the motion of the inertia wheel pendu-
lum system in the upper half-plane, and assumes that the pendu-
lum angle variation range satisfies θ1 ∈ (−π/2, π/2), thus 0 ≤
|ξ3| ≤ J1 holds true. Consequently, 1− (ξ3/J1)

2 > 0 is valid,
and the aforementioned transformation remains singularity-
free within the scope of this study.

To sum up, through this transformation, the motion planning
problem of the inertia wheel pendulum system between the ini-
tial state-space point x(0) and the target point x(tf ) can be
converted into a curve interpolation problem in the differential
flat output space that satisfies the relevant boundary conditions.

3.2. Trajectory Parameterization

Polynomial function is applied as the differential flat output,
thus the specific expression can be given as follows

y =

s∑
i=1

ai−1t
i−1 (17)



where t ∈ [0, tf ], ai(i = 1, 2, ..., s) are constants represent-
ing the undetermined coefficients of the polynomial, and s is a
given constant related to the degree of the polynomial, which
satisfies s > 8.

Based on the initial and final states of the system, the follow-
ing redundant undetermined coefficient matrix equation can be
constructed

Aa =

[
ξ(0)

ξ(tf)

]
(18)

where a = [a0 a1 ... as−1]
T, and A ∈ R8×s satisfies

A =



1 0 0 0 0 ... 0
0 1 0 0 0 ... 0
0 0 2 0 0 ... 0
0 0 0 6 0 ... 0
1 tf t2f t3f t4f ... ts−1

f

0 1 2tf 3t2f 4t3f ... (s− 1)ts−2
f

0 0 2 6tf 12t2f ...
(s− 1)!

(s− 3)!
ts−3
f

0 0 0 6 24tf ...
(s− 1)!

(s− 4)!
ts−4
f


Meanwhile, based on the relevant state constraints (3)-(5) at

the initial and terminal moments of the inertia wheel pendulum,
as well as the relationship between the system states and the
flat outputs, the following initial and terminal states of the flat
outputs can be obtained

ξ(0) =
[
θ01 0 J1sinθ

0
1 0

]T
(19)

ξ(tf) =
[
−J2θ

f
2 0 0 0

]T
(20)

According to the pendulum angular velocity constraint (8)
and the relationship between the system states and the flat out-
puts (14) and (16), the following inequality constraints can be
obtained ∣∣∣∣∣

...
y

J1
√
1− (ÿ/J1)2

∣∣∣∣∣ ≤ θ̇max
1 (21)

∣∣∣∣∣
...
y

J1J2
√
1− (ÿ/J1)2

− ẏ

J2

∣∣∣∣∣ ≤ θ̇max
2 (22)

Therefore, the minimum-time swing-up motion planning for
the inertia wheel pendulum system can be transformed into the

following optimization problem.

min tf(a0, a1, ..., as−1)

s.t.



Aa = [ξ(0), ξ(tf)]
T∣∣∣∣∣

...
y

J1
√

1− (ÿ/J1)2

∣∣∣∣∣ ≤ θ̇max
1∣∣∣∣∣

...
y

J1J2
√

1− (ÿ/J1)2
− ẏ

J2

∣∣∣∣∣ ≤ θ̇max
2

(23)

3.3. Trajectory optimization solution

It can be seen from (23) that the objective function of this
optimization problem is quasi-convex, while the relevant con-
straints are convex, which can be regarded as a standard quasi-
convex optimization problem [13], and the optimal solution can
be obtained by solving a series of convex feasibility problems.
Meanwhile, considering the multidimensional nonlinear char-
acteristics of the problem, the convex feasibility problems can
be iteratively addressed using the particle swarm optimization
algorithm.

Additionally, a larger s leads to more variables to be opti-
mized, which can also increase the complexity of the solution.
Conversely, a smaller s reduces the number of variables to be
optimized, which may result in the non-existence of an optimal
solution. In this study, balancing the necessary conditions for
the existence of an optimal solution and the requirement to re-
duce computational complexity, s = 10 is chosen such that the
variables to be optimized are 10 parameters, namely, a0, a1,
a2, a3, a4, a5, a6, a7, a8, and a9. Note that the number of opti-
mization variables can be further reduced based on the equality
constraints in the system.

To this end, by substituting (17) and its derivatives into the
equality constraints in (23), we obtain

a0 = θ01 (24)

a1 = 0 (25)

a2 =
J1
2
sinθ01 (26)

a3 = 0 (27)

a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f + a6t

6
f+

a7t
7
f + a8t

8
f + a9t

9
f = −J2θ

f
2

(28)

4a4t
3
f + 5a5t

5
f + 6a6t

5
f + 7a7t

6
f + 8a8t

7
f + 9a9t

8
f =

− J1tfsinθ
0
1

(29)

5a5t
4
f +12a6t

5
f +21a7t

6
f +32a8t

7
f +45a9t

8
f = 2J1tfsinθ

0
1 (30)



2a6t
5
f + 7a7t

6
f + 16a8t

7
f + 30a9t

8
f = −J1tfsinθ

0
1 (31)

Clearly, the four parameters a0 , a1, a2 and a3 can be deter-
mined by (24), (25), (26) and (27), respectively. Since θf2 can
take any arbitrary value, thus (28) has no practical effect. The
remaining six parameters are subject to the three constraints
given by (29)-(31). Once a7 , a8 and a9 are determined, a6 can
be derived from (31), followed by determining a5 from (30) and
a4 from (29). This process allows all trajectory coefficients to
be fully determined.

On that basis, the following steps can be employed to solve
the optimization problem

(1) Given the allowable error pc for the bisection method’s
termination, along with the upper bound tu and lower bound tl
for tf , where tu is determined empirically and tl can be derived
from the following equation

tl = θ01/θ̇
max
1 (32)

(2) Calculate the swing-up motion time of the system as fol-
lows

tf = (tl + tu)/2 (33)

(3) Taking a7, a8 and a9 as the unknown variables to be opti-
mized (where a0, a1, a2, a3, a4, a5 and a6 can be obtained from
(24)-(27) and (29)-(31)), and minimizing the violation of the
constraints in (23) as the objective function, a particle swarm
optimization algorithm with N particles is iterated M times to
obtain the constraint violation measure ec .

(4) If ec < emax
c , it indicates that there exists a motion tra-

jectory satisfying the current tf and the relevant constraints. In
this case, assign the current tf to the upper bound tu of the
bisection method. Otherwise, it means no feasible motion tra-
jectory satisfies the current tf and constraints, so assign the
current tf to the lower bound tl of the bisection method, where
emax
c is a given small constant.

(5) Calculate the error eb between the upper and lower
bounds of the bisection method as follows:

eb = tu − tl (34)

If eb > pc , return to step (2) to continue solving; otherwise, the
process terminates, and the current tf and the optimal trajectory
parameters a0, a1, a2, a3, a4, a5, a6, a7, a8 and a9 are output,
thereby generating the minimum-time swing-up trajectory for
the inertia wheel pendulum system.

4. Design of the Stable Tracking Controller

After obtaining the time-optimal swing-up trajectory, it is
necessary to design a tracking controller to achieve fast swing-

up control of the system. It can be seen from the system’s dy-
namic equations (1) and (2), the inertia wheel pendulum system
has two degrees of freedom (θ1 and θ2 ) but only one control
input (the inertial wheel’s driving torque τ ), which makes it
a typical underactuated system, thus the pendulum angle can
only be indirectly regulated through the control of the inertial
wheel.

To fixed this problem, two PD tracking controllers for both
the pendulum and the inertia wheel are designed, separately,
then combines their outputs as the final control input, as follows

τ = k1(θ1−θd1 )+k2(θ̇1−θ̇d1 )+k3(θ2−θd2 )+k4(θ̇2−θ̇d2 ) (35)

where θd1 and θ̇d1 represent the desired pendulum angle and
angular velocity, respectively, which are determined by the
planned time-optimal trajectory, θd2 and θ̇d2 denote the desired
inertia wheel angle and angular velocity, respectively, which
are also derived from the planned time-optimal trajectory, and
k1, k2, k3 and k4 are four controller design constants, the sign
assignments of which will be analyzed in detail below.

For convenience, the principle of pendulum motion control
is analyzed using the state near the upright equilibrium point of
the system as an example. As shown in Fig.2(a), when the pen-
dulum reaches the upright position, i.e., the pendulum angle θ1
equals the desired value, the inertial wheel’s control torque τ
should be zero. When the pendulum deviates to the left of the
upright position, as shown in Fig.2(b), i.e., when the pendulum
angle θ1 is less than the desired value, the inertia wheel’s con-
trol torque τ should be negative, which generates a torque that
causes the pendulum to move clockwise, thereby increasing the
pendulum angle. When the pendulum deviates to the right of
the upright position, as shown in Fig.2(c), i.e., when the pen-
dulum angle θ1 exceeds the desired value, the inertial wheel’s
control torque τ should be positive, which produces a coun-
terclockwise torque to reduce the pendulum angle. Therefore,
k1 should take a positive value. Similarly, k2 should also be
positive. For the motion control of the inertia wheel, due to the
non-minimum phase characteristics of the system, conventional
negative feedback control would prevent the pendulum’s mo-
tion of swinging up. Thus, a positive feedback control strategy
should be adopted. Specifically, when the inertia wheel angle
θ2 is smaller than the desired value θd2 , the control torque should
be negative; when θ2 exceeds θd2 , the control torque should be
positive, thus k3 and k4 should also be assigned positive values.

5. Simulation Results

To verify the effectiveness of the proposed fast swing-up
control method based on motion planning for the inertia wheel
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FIGURE 2. Control principle of the pendulum

pendulum system, simulation test were conducted using Mat-
lab/Simulink. The results were compared with a swing-up con-
troller without motion planning to demonstrate the advantages
of the proposed approach. The structural parameters of the sys-
tem were selected as shown in Tab.1, with the initial pendulum
angle being set to θ01 = π/6 and the velocity constraints for
the pendulum and inertia wheel being set to θ̇max

1 = 12 and
θ̇max
2 = 2000, respectively. In addition, the key parameters in

particle swarm optimization algorithm are set with N = 2000
and M = 100, and the tracking controller parameters are set
with k1 = 80, k2 = 20, k3 = 0.0001, and k4 = 0.0001. The
simulation results are presented in Fig.3-Fig.5.

TABLE 1. Structure parameters of the system

Parameters Value Units
l1 0.063 m
l2 0.125 m
m1 0.02 kg
m2 0.3 kg
I1 0.000047 kg ·m2

I2 0.000032 kg ·m2

As indicated by the red dashed line in Fig.3, the planned
time-optimal trajectory enables the pendulum angle θ1 to
rapidly move from its initial value to zero in just 0.168s. Fur-
thermore, the designed tracking controller effectively ensures
that the actual pendulum angle closely follows the planned tra-
jectory, as the black solid line show in Fig.3. In contrast, a di-
rect PD controller without motion planning requires more than
1s to drive the pendulum angle θ1 from the initia value to zero,
as depicted by the blue dash-dotted line in Fig.3.

Additionally, as shown in Fig.4 and Fig.5, the pendulum
angular velocity (red dashed line in Fig.4) determined by the
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planned time-optimal trajectory satisfies the |θ̇1| ≤ θ̇max
1 con-

straint, while the inertia wheel angular velocity (red dashed
line in Fig.5) meets the |θ̇2| ≤ θ̇max

2 constraint. Under the
designed tracking controller, the actual system trajectories ef-
fectively track the desired reference trajectories.

By contrast, when using a direct PD controller without
motion planning, although the state trajectories still comply
with the constraints, they remain significantly distant from
the constraint limits, which indicates a failure to fully exploit
the system’s motion potential. Therefore, the proposed mo-
tion planning-based fast swing-up control method can achieve
minimum-time swing-up to the upright position while satisfy
system state constraints, demonstrating the feasibility and su-
periority of the proposed approach.

6. Conclusions

A fast swing-up control method for inertia wheel pendulum
systems based on motion planning is proposed in this study.
By employing differential flatness theory and considering sys-
tem motion constraints, an optimization model for minimum-
time swing-up trajectory generation is derived, which is solved
by a bisection method combined with particle swarm optimiza-
tion. On that basis, an effective trajectory tracking controller
is designed through dynamic analysis to achieve fast swing-up
of the inertia wheel pendulum. Simulation results demonstrate
that the proposed method enables fast swing-up while satisfies
system constraints, and significantly reduces the swing-up time
compared to controllers without motion planning.
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