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Abstract:
This paper presents a novel framework for automated factual

verification in conversational AI systems through the integra-
tion of symbolic logic, statistical semantics, and graph-based
reasoning. Unlike conventional approaches that rely solely on
either rule-based systems or large language models (LLMs),
our hybrid methodology combines the formal guarantees of
logical verification with the flexibility of neural language under-
standing. We implement this framework as a comprehensive
reasoning engine that can ingest organizational policies as
documents and automatically validate LLM-generated re-
sponses against these policies. The system exhibits improved
alignment with organizational policies through its ability to
handle natural language variations, perform numeric threshold
validations, and execute multi-hop reasoning over complex
rules. We discuss the implications of this work for developing
more reliable, trustworthy AI assistants that maintain factual
consistency with authoritative knowledge sources while pre-
serving the natural conversational capabilities of modern LLMs.
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1. Introduction

Large language models (LLMs) have revolutionized conver-
sational AI systems with their capabilities to generate fluent,
contextually appropriate responses across diverse domains [1,
2]. Recent advances in model architectures, training method-
ologies, and scaling laws have produced systems capable of
sophisticated multi-turn dialogues, complex reasoning, and
domain-specific expertise [3]. Despite these advances, LLMs

continue to struggle with factual consistency, often generating
plausible-sounding but incorrect information, a phenomenon
broadly termed ”hallucination” [4, 5, 6].

This shortcoming has significant implications for real-world
deployments where accuracy is paramount. In customer ser-
vice, healthcare consultations, financial advising, and legal as-
sistance, factual inconsistencies can lead to misinformation, li-
ability issues, and erosion of user trust. When LLMs serve as
organizational interfaces, they must maintain strict alignment
with established policies, regulations, and domain knowledge.

The escalating deployment of LLM-powered systems across
critical domains heightens the need for robust verification
mechanisms. As Bubeck et al. [7] note, we face a paradoxi-
cal challenge: the same emergent capabilities that make these
models useful simultaneously make their outputs more difficult
to verify due to their fluency and authoritative tone. Factual
verification thus represents a fundamental frontier in ensuring
that conversational AI systems remain reliable, trustworthy, and
aligned with organizational and societal values [8].

Addressing LLM hallucination involves diverse strategies.
Model-centric methods focus on internal model mechanisms,
including adversarial training to improve robustness [9], un-
certainty estimation to flag low-confidence outputs, special-
ized decoding strategies that penalize unlikely statements, and
self-consistency checks where models attempt internal verifi-
cation. Data-centric approaches emphasize the training process
through improved data curation [10], pretraining with exter-
nal knowledge grounding, and supervised fine-tuning on high-
quality examples [11]. Despite progress, these methods often
exhibit limitations in maintaining factual accuracy within spe-
cific domains or when encountering novel scenarios not present
in training data.

RAG systems aim to enhance factual consistency by dynami-
cally incorporating external knowledge during generation [12].



Seminal work like REALM [13] showed significant gains, with
subsequent systems further refining retrieval and integration
techniques [14]. However, challenges remain. Models can still
misinterpret or contradict the retrieved information (”retrieval
hallucination”), retrieved context can sometimes negatively im-
pact fluency or coherence [15], and significant inconsistency
rates persist even with retrieved evidence.

An alternative paradigm focuses on verifying generated con-
tent after it is produced, using trusted sources [16]. Various
techniques exist, such as comparing outputs to reference texts
using similarity metrics [18], retrieving supporting evidence for
generated claims and checking consistency, decomposing com-
plex statements into simpler, verifiable units [17], and adapting
automated fact-checking methods. A key challenge lies in bal-
ancing the rigidity of symbolic methods against the opacity of
purely neural approaches, while ensuring both high precision
and recall in verification judgments.

To overcome these limitations, we propose a novel hybrid
symbolic-statistical reasoning framework specifically designed
for automated factual verification against organizational poli-
cies. Our approach uniquely integrates three complementary
methods: 1) Symbolic verification using Dung’s abstract ar-
gumentation frameworks [19] to formally handle policy rules
and conflicts, 2) Statistical semantic analysis interpret natural
language nuances and context, and 3) Knowledge graph rea-
soning to perform multi-hop inference across interconnected
policy concepts. This synergistic combination, enhanced by
explicit uncertainty quantification, enables more robust veri-
fication than single methods alone. It also provides transpar-
ent explanations of the reasoning process, addressing a key gap
identified in prior work [21, 22].

2. Proposed method

We present VERSE (Verifiable Extraction and Reasoning
System Engine), a novel neuro-symbolic framework for policy-
aware language generation. VERSE combines formal logic, se-
mantic embeddings, and graph-based reasoning to ensure gen-
erated text complies with specified policies. Figure 1 illustrates
the overall architecture of our system. The system comprises
three primary components: i) Policy Extraction: Transforms
natural language policy documents into structured, machine-
actionable representations; ii) Hybrid Reasoning Engine: Inte-
grates symbolic, semantic, and graph-based approaches to ver-
ify compliance; iii) Response Validation: Applies the reasoning
engine to validate generated content against established poli-
cies.

2.1. Policy Representation Formalism

We formally define policies as collections of rules and vari-
ables with specific properties. A policy P is defined as:

P = (V,R, I) (1)

where V = {v1, v2, . . . , vn} represents a set of variables, R =
{r1, r2, . . . , rm} denotes a set of rules, and I is the policy intent
expressed in natural language.

Each variable vi ∈ V is a 4-tuple:

vi = (namei, typei, descriptioni, valuesi) (2)

where namei is a unique identifier, typei ∈
{boolean, number, string, date, duration, categorical} spec-
ifies the data type, descriptioni provides a natural language
explanation, and valuesi contains possible values for categori-
cal variables.

Each rule rj ∈ R is a 5-tuple:

rj = (idj , conditionj , conclusionj ,

descriptionj , textj)
(3)

where idj is a unique identifier, conditionj is a logical expres-
sion over variables, conclusionj specifies the rule’s outcome,
descriptionj provides a natural language summary, and textj
preserves the original policy text.

2.2. Policy Extraction Framework

The policy extraction component converts natural language
policy documents into the formal representation described
above. The extraction process uses industry-specific prompt-
ing to improve LLM extraction accuracy. For each variable
and rule, the system attempts to identify: i) key entities and
concepts in the policy, ii) logical relationships (conditions and
conclusions), iii) threshold values and constraints, iv) cross-
references within the document.

2.3. Hybrid Reasoning Engine

The core innovation of our system is the Hybrid Reason-
ing Engine (HRE), which combines three complementary ap-
proaches to policy verification.

2.3.1 Symbolic Reasoning

The symbolic component verifies statements against policies
using formal logic. Given a statement s and policy P , we trans-
form rules R into logical formulas using predicate logic. A rule



FIGURE 1. Overview of VERSE

rj = (idj , conditionj , conclusionj , descriptionj , textj) is
transformed into a logical implication:

Φ(rj) = conditionj =⇒ conclusionj (4)

Statement verification is formalized as a logical entailment
problem:

V alid(s, P ) =

 true if ∃rj ∈ R : Φ(rj) |= s
false if ∃rj ∈ R : Φ(rj) |= ¬s
unknown otherwise

(5)
To implement this symbolic reasoning, we use a combination

of rule pattern matching and logical inference techniques.

2.3.2 Semantic Verification

The semantic component uses neural embeddings to capture
semantic relationships between statements and policies. For
each statement s and rule rj ∈ R, we compute embedding vec-
tors:

es = Embed(s), erj = Embed(textj) (6)

We then calculate the semantic similarity using cosine simi-
larity:

sim(s, rj) =
es · erj

||es|| · ||erj ||
(7)

The semantic verification result is determined by:

SemV alid(s, P ) =



true if ∃rj ∈ R :

sim(s, rj) > τsupport

false if ∃rj ∈ R :

sim(s,¬rj) > τcontradict

unknown otherwise
(8)

where τsupport and τcontradict are threshold hyperparame-
ters, and ¬rj represents the negation of rule rj .

2.3.3 Graph-Based Reasoning

The graph-based component represents policies as knowl-
edge graphs where: i) nodes represent variables, conditions,
conclusions, and rules and ii) edges represent relationships be-
tween these elements. We formalize this as a directed graph
G = (N,E) where: N = NV ∪ NC ∪ NL ∪ NR (variable
nodes, condition nodes, conclusion nodes, rule nodes), E de-
fines relationships between nodes.

For statement verification, we perform a subgraph matching
procedure:



GraphV alid(s, P ) =



true if ∃H ⊂ G :

Match(s,H)∧
Support(H)

false if ∃H ⊂ G :

Match(s,H)∧
Contradict(H)

unknown otherwise
(9)

where Match(s,H) determines if subgraph H semantically
matches statement s, and Support(H) and Contradict(H)
determine if the subgraph supports or contradicts the statement.

2.3.4 Integration Methodology

The integration of these three reasoning approaches was ex-
plained in previous sections. Confidence scores are combined
using a weighted sum.

C = wsymCsym + wsemCsem + wgraphCgraph (10)

where weights wsym, wsem, and wgraph are determined empir-
ically based on reasoning method reliability.

2.3.5 Augmentation Framework for Conflict Resolution

To handle conflicts between reasoning methods, we imple-
ment Dung’s abstract argumentation framework [19]. Con-
flicts are modeled as an argumentation graph AF =
(Args,Attacks) where: i) Args is the set of arguments (veri-
fication results) and ii) Attacks ⊆ Args × Args is the attack
relation.

We define the argument strength σ : Args → [0, 1] based on
confidence scores. The conflict resolution algorithm identifies
the ”preferred extension” of the argumentation framework:

preferred(AF ) =S⊆Args |S|
s.t. ∀a, b ∈ S : (a, b) /∈ Attacks

(11)

2.4. Response Validation Framework

The response validation component applies our hybrid rea-
soning to verify generated content. Algorithm ?? outlines this
process. Our hybrid reasoning approach combines the com-
plementary strengths of different verification strategies while
mitigating their individual weaknesses: i) symbolic reasoning

provides formal guarantees when rules and statements can be
precisely formalized, but struggles with natural language ambi-
guity; ii) semantic verification captures nuanced relationships
between statements and policies, but lacks formal logical guar-
antees; and iii) Graph-based reasoning models complex depen-
dencies between policy elements but may miss logical implica-
tions.

2.5. Experimental Setup and Evaluation

We constructed two datasets for evaluation:

1. Policy Dataset: Structured policies in JSON format cov-
ering travel and privacy domains (n=1 each), with 3-14
rules each containing a natural language description and
formal conclusion.

2. Test Statements: 1,000 statements (40% valid, 40% in-
valid, 20% ambiguous), stratified by complexity and state-
ment type.

We evaluated using the following metrics:

• Accuracy: Proportion of correctly classified statements

• Precision: Proportion of statements classified as valid that
are truly valid

• Recall: Proportion of truly valid statements that are clas-
sified as valid

• F1 Score: Harmonic mean of precision and recall

• Abstention Rate: Proportion of statements where the sys-
tem deferred judgment

• Mean Confidence Error (MCE): Calibration metric
measuring the difference between confidence and accu-
racy

We conducted a series of experiments to evaluate our hybrid
reasoning approach:

1. Overall Performance: Evaluated the full system on the
test dataset.

2. Ablation Study: Systematically disabled components to
assess individual contributions.

3. Cross-Domain Analysis: Tested generalization ability
across different policy domains.

4. Error Analysis: Categorized and analyzed error patterns
for improvement.



3 Results and Analysis

The complete hybrid reasoning system achieved an overall
accuracy of 82.4% on the test dataset. Table 1 presents the full
set of performance metrics.

TABLE 1. Overall System Performance

Metric Value
Accuracy 82.4%
Precision 86.3%
Recall 79.1%
F1 Score 82.5%
Abstention Rate 5.2%
Mean Confidence Error 0.068

The system demonstrated high precision, indicating reliabil-
ity when making positive assertions about statement validity,
and a modest abstention rate, showing appropriate deferral on
ambiguous cases.

Reasoning methods showed varying strengths across state-
ment types (Figure 1). Semantic reasoning achieved the highest
standalone accuracy (78.9%), followed by graph (76.3%) and
symbolic reasoning (71.2%). The full hybrid system outper-
formed any individual method, demonstrating complementary
natures. Graph-based reasoning showed particular strength in
resolving conflicting information, with a 24.8% accuracy im-
provement over symbolic reasoning alone for such statements.

An ablation study quantified each component’s contribution
(Table 2). The results demonstrate that each reasoning method
contributes, with semantic reasoning providing the most sub-
stantial individual contribution, but the full system benefits sig-
nificantly from the integration of all three approaches.

TABLE 2. Ablation Study Results

Configuration Accuracy Precision Recall F1
Score

MCE

Full System 82.4% 86.3% 79.1% 82.5% 0.068
No Symbolic 80.1% 84.2% 76.8% 80.3% 0.074
No Semantic 75.6% 79.8% 72.4% 75.9% 0.083
No Graph 78.3% 83.5% 74.1% 78.5% 0.072
Symbolic 71.2% 77.3% 68.4% 72.6% 0.091
Semantic 78.9% 82.1% 76.2% 79.0% 0.076
Graph 76.3% 80.5% 73.0% 76.6% 0.081

4. Conclusions

This paper presented a novel hybrid neuro-symbolic reason-
ing framework for automated factual verification in conversa-
tional AI systems, integrating symbolic logic, statistical seman-
tics, and knowledge graph reasoning. Our approach achieves

significantly higher verification accuracy than single-method
approaches while providing transparent explanations, demon-
strating successful real-world deployment in a personal assis-
tant chatbot.

Our work addresses a critical challenge in deploying
LLM-based assistants in domains where factual accuracy is
paramount. The hybrid framework enables organizations to
leverage LLMs while ensuring outputs align with authoritative
policies and knowledge, enhancing user trust through transpar-
ent and explainable verification.

The promising results suggest hybrid reasoning represents a
valuable direction for improving factual consistency in AI sys-
tems more broadly. Future work can build on this to develop
more robust verification frameworks across diverse domains
and use cases.
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