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Abstract:
Basin extreme precipitation plays a critical role in regu-

lating reservoir operations and water allocation strategies.
Machine learning methods provide new opportunities for
precipitation prediction. However, due to complex factors,
forecasting extreme precipitation in the basin remains a
formidable challenge. In this paper, based on the extensive
feature engineering, an ensemble learning framework is
proposed for forecasting extreme precipitation in basins.
In particular, a meta-learned method based on stacked
generalization is adopted for ensemble forecasting by con-
structing a two-layer prediction model and feeding the
prediction results of the basic classifiers (layer 0 models)
into a layer 1 model. The results of forecast experiments
on Dongjiang river basin show that our method is more
effective then traditional time series methods, single machine
learning models, and even deep learning time series model.
Keywords:
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1. Introduction

Effective management of river basin systems [1, 2] neces-
sitates sophisticated hydrological forecasting capabilities.
Advanced prediction of precipitation, especially extreme
events, plays a critical role in regulating reservoir opera-
tions and water allocation strategies to mitigate disastrous
consequences like catastrophic flooding [3, 4]. Neverthe-
less, accurate projection of severe precipitation events per-
sists as a significant scientific challenge due to multifaceted
influencing parameters.

Contemporary precipitation prediction methodologies
primarily employ synoptic analysis and statistical mod-
eling techniques. Synoptic meteorological approaches,

while valuable, exhibit inherent limitations as they depend
on human interpretation, potentially leading to inter-
forecaster variability and inadequate spatial resolution for
differentiating rainfall quantities across localized regions.
Statistical prediction frameworks encompass three princi-
pal categories: mathematical modeling [5], physical sim-
ulation [6], and dynamic statistical analysis [7]. Mathe-
matical statistics enables probabilistic forecasting through
historical climate pattern analysis, with its application in
short-term climate prediction tracing back to early 1900s.
Recent decades have witnessed substantial advancements
in these techniques, particularly in dynamic statistical
methodologies, driven by enhanced global observation net-
works and computational model refinement. However,
conventional statistical methods demonstrate limited ef-
fectiveness in extreme event prediction due to their inher-
ent neglect of precipitation formation mechanisms.

Prior research predominantly emphasized identifying
correlative relationships and hierarchical organization of
precipitation-influencing variables. The intricate dynam-
ical interplay between these factors has hindered devel-
opment of physics-based predictive models [8]. Both con-
ventional physical approaches and existing statistical tech-
niques exhibit restricted accuracy, especially with respect
to the prediction of extreme events. In recent decades,
with continuous accumulation of high-quality observa-
tional data, statistical machine learning methods provide
new opportunities for precipitation prediction.

Statistical learning architectures are generally divided
into two paradigms: generative models and discrimina-
tive models [9]. Generative frameworks (e.g., Naive Bayes
classifiers, hidden Markov models) model joint probability
distributions, whereas discriminative approaches (includ-
ing neural networks, support vector machines, decision
trees, and maximum entropy models) focus on conditional
probability relationships. Current applications of neural



networks and support vector machines span both station-
specific precipitation forecasting [10] and annual rainfall
prediction [3], frequently incorporating outputs from at-
mospheric circulation models. While recent emphasis has
shifted toward dynamical models, their limitations remain
incompletely understood. Discriminative models offer dis-
tinct advantages in scenarios involving unclear extreme
precipitation mechanisms, demonstrating reduced sensi-
tivity to latent characteristic correlations and enhanced
capacity for utilizing comprehensive feature sets compared
to generative counterparts.

Considering that combining different types of models
can be expected to make the final decision more reliable,
this paper proposes and implements ensemble forecasting
based on multiple single models to integrate the advan-
tages of them. The proposed model with extensive feature
engineering aims to predict 24-hour extreme precipitation
events in the Dongjiang river basin. The developed fore-
casting framework enables subsequent hydrological com-
putations for optimized reservoir management and water
resource allocation.

This paper is organized as follows: Section 2 details the
proposed ensemble forecasting framework. Section 3 pro-
vides experimental validation through comparative anal-
ysis of the proposed model against traditional time series
methods, single machine learning models and deep learn-
ing time series model, and the conclusion is presented in
Section 4.

2 Methodology

The overall framework of the proposed ensemble fore-
casting for basin extreme precipitation is shown in Fig-
ure 1, which includes four levels: data level, feature level,
model level, and decision level.

2.1 Data level

The raw data selected has certain explanatory signif-
icance for extreme precipitation in the Dongjiang river
basin, including daily grid data of precipitation, temper-
ature and pressure data, and typhoon data. More details
about the datasets in our study is shown in Subsection
3.1.

2.2 Feature generation

The features used for machine learning modeling are
generated from the datasets. We use function-based fea-

FIGURE 1. The overall structure of our method

ture generation methods, such as aggregate, synthesis,
statistical, boolean operators, and concept hierarchies by
data reduction: (1) Aggregate functions typically include
the mean, total, maximum, minimum, count, first value,
last value, median, and standard deviation. (2) Synthesis
functions are functions that use original features or aggre-
gate features as input to calculate a new meaningful fea-
ture. The basic synthetic functions, such as add, subtract,
multiply, and divide, were used in our framework. (3) Four
statistical features, i.e., level number, range, fairness in-
dex, and volatility index, are applied from the serialization
precipitation data. (4) In addition, concept hierarchies by
data reduction were used, such as wet/dry periods, pre
flood season, and later flood season.

2.3 Machine learning models

Three machine learning models are used in the model
level of our framework, including one generative model
and two discriminative models.

2.3.1 Naïve Bayesian model

Naïve Bayesian algorithm (NB) [9] is based on the
Bayesian theorem, which is a generative model that fo-
cuses on the total probability of all variables. Although it
is not a complex model, it can achieve better prediction



performance than traditional time series methods and sim-
ilar to discriminative models under the condition of a rich
feature set. Naïve Bayes model does not have inherent dif-
ficulties such as overfitting in neural network algorithms,
human intervention in support vector machine applica-
tions, and difficulty in adjusting parameters.

2.3.2 Neural network model

Neural network (NN) model [11] is a discriminative
model based on observations of variables and conditional
probability of a target variable under certain premises.
Neural networks, inspired by biological cognitive mecha-
nisms, have demonstrated significant efficacy in predic-
tive analytics. For this research, we adopted a back-
propagation (BP) neural network, which is a hierarchically
structured feedforward system utilizing error backpropa-
gation methodology that has gained predominant applica-
tion in industrial implementations. Distinctively, BP net-
works employ differentiable S-shaped activation functions
(typically sigmoid-type transfer units) to establish nonlin-
ear correlations between input and output variables. For
example, Tansig/Purelin network [11], a two-layer BP net-
work possesses universal function approximation capabil-
ities, theoretically able to model any measurable function
with limited discontinuities to arbitrary precision when
provided with adequate hidden layer neurons.

2.3.3 Support vector machine model

Support vector machines (SVMs) [12] are alternative
discriminative models that possess a high level of gener-
alization and can therefore be used for precipitation fore-
casting [13]. SVMs are statistical learning methods for
structural risk minimization discriminant models, which
have better expected generalization ability compared to
neural networks. As a discriminative model, support vec-
tor machines are also not troubled by potential correla-
tions between features. The key to achieving good predic-
tive performance for support vector machines lies in how
to adjust key parameters such as the selection of kernel
function and the determination of C-value.

2.4 Ensemble by stacked generalization

The meta learner method of stacked generalization [14]
is adopted for ensemble forecasting. By constructing a
two-layer prediction model and inputting the prediction
results of the basic classifiers (layer 0 models) into a layer

1 model, multiple layer 0 models are fused at the decision
level through the layer 1 model to achieve combined fore-
casting. When outputting from a single model at layer 0
to a layer 1 model, using probability output to carry the
prediction confidence of each single model for each predic-
tion instance will be beneficial for the integration of the
layer 1 model with the layer 0 models. As this paper fo-
cuses on extreme precipitation forecasting, the output of
each layer 0 model will be two probabilities, namely the
probability of extreme precipitation and the probability of
no extreme precipitation.

2.4.1 Probability output of layer 0 models

Naïve Bayes, neural networks, and support vector ma-
chine models are used in the layer 0 models in the paper,
and the probability output by these models can vary.

• Naïve Bayes model: For each predicted instance x,
the output probability of each category Pi(x) in the
Naive Bayes model is obtained by the ratio of the pos-
terior probability of each category to the total prob-
ability of all categories:

Pi(x) = P (i|x)/
2∑

j=1

P (j|x) (1)

• BP neural network model: The output of BP neural
network does not have probability. For this purpose,
for each predicted instance x, we first define a model
output confidence Ci(x), where i is the corresponding
prediction category, and calculate the output proba-
bility estimate Pi(x) based on the confidence:

Pi(x) = Ci(x)/

2∑
j=1

Cj(x) (2)

When training the neural network model, we used
small precipitation levels, 0-50 levels, with one level
every 5mm, except for [0,0.1mm) representing no
rain. Therefore, for each predicted instance x, the
neural network outputs a predicted small category,
which we then convert into the corresponding large
category, that is, with or without extreme precipita-
tion. The level difference between the model output
level and the actual precipitation level is used as the
model output confidence measure, and mapped to the
range of 0.5-1. A level difference of 0 corresponds to



a confidence level of 1, and the maximum level differ-
ence corresponds to a confidence level of 0.5. Based
on this, the output confidence of instance x regarding
category i is obtained.
Due to the fact that the actual precipitation level of
instance x is still unknown during prediction, for each
predicted data in the dataset, we first find the most
similar five instance data from the previous five years.
The similarity is obtained based on the feature set and
using cosine as an example. Then, using similarity
as a weight, the weighted output confidence of the 5
instance data is used as the output confidence of the
predicted category of the data to be predicted.

• Support Vector Machine Model: The output of sup-
port vector machine also does not carry probability.
Therefore, for each predicted instance x, we need to
first define a model output confidence Ci(x), where i
is the corresponding prediction category, and calcu-
late the output probability estimate Pi(x) based on
the confidence. The calculation formula is the same
as equation (2).
In support vector machine models, the farther the
data is from the hyperplane in high-dimensional
space, the lower the likelihood of misclassification.
Therefore, the confidence measure of the model is di-
rectly taken as the distance between each predicted
instance x in the sixth year and the hyperplane of
the support vector machine model trained on the data
from the previous five years, and mapped to the range
of 0.5-1. The maximum distance corresponds to a
confidence level of 1, and the distance of 0 corresponds
to a confidence level of 0.5, in order to obtain the out-
put confidence of Ci(x).

2.4.2 Layer 1 modeling

As an arbitrator in the selection of layer 1 model, some
researchers have suggested that choosing a simple model
that can integrate the outputs of layer 0 models is more
appropriate [14]. Considering that most of the early re-
search was based on relatively similar layer 0 models, such
as linear models, while the three layer 0 models used in this
paper include linear and nonlinear models, we adopted a
nonlinear layer 1 model for the synthesis of layer 0 mod-
els of different classes. Specifically, we take the output
probabilities of three layer 0 models for different predic-
tion categories as the input of a layer 1 SVM. The data

from the first five years are used to establish the model
using cross validation.

3 Experiments

3.1 Datasets

The data sets used to forecast the basin extreme pre-
cipitation include the basin precipitation time series, the
meteorological data, and the typhoon data.

• Basin Daily Grid Precipitation Dataset. This study
utilized daily gridded precipitation records (2008-
2013) covering the Dongjiang river basin, acquired
from the National Climatic Centre (NCC) of the
China Meteorological Administration (CMA). The
locations of the Dongjiang river basin and the
corresponding geographical grid considered in our
study are shown in Figure 2. The dataset features
0.25°×0.25° spatial resolution, and in this paper,
mean area precipitation is used to analyze the daily
precipitation of the river basin.

• Basin Meteorological Data. We obtained the basin
area and associated meteorological data, including
surrounding temperature and pressure from the daily
surface climate dataset of NCC to generate a feature
set for forecasting purposes.

• Typhoon Data. We also obtained daily typhoon fore-
cast data including the path, speed and 10-gale ring
area from the Flood Release System of Guangdong
Province to generate feature for forecasting purposes.

3.2 Baselines

We compare our model ESG (Ensemble by stacked gen-
eralization) with the following methods:

• Simple moving average method (SMA) [15]: A tra-
ditional time series method in which the mean pre-
cipitation value of the evidence window serves as the
prediction for the future precipitation.

• Auto-regression method (AR) [15]: Another com-
monly used model in time series modeling and anal-
ysis. Use the same variable, such as the precipitation
of previous periods, to predict the performance of the
future precipitation, and assume that they have a lin-
ear relationship.



FIGURE 2. Location of the study region and geographical grid

• Naïve Bayesian algorithm (NB) [9]: A generative
model based on the Bayesian theorem, which is a gen-
erative model that focuses on the total probability of
all variables.

• Neural network model (NN) [11]: a discriminative
model inspired by biological cognitive mechanisms,
have demonstrated significant efficacy in predictive
analytics.

• Support vector machines (SVMs) [12, 13]: Another
discriminative model, which is one of the most pop-
ular machine learning methods that belongs to the
structural risk minimization.

• Autoformer [16]: A deep learning model for process-
ing time series prediction tasks using precipitation se-
ries data, which innovatively combines the Decompo-
sition Architecture and Auto Correlation Mechanism.

3.3 Metrics

Model performance are measured using the Metrics of
F-Measure and Bias Score.

3.3.1 F-Measure

Precision (P), Recall (R) and F1-score are widely used
to evaluate the quality of forecasting results

Precision denotes the proportion of predicted positive
cases (extreme precipitation) that are correct real posi-
tives:

P = TP/(TP + FP ) (3)

where TP is the True Positive and FP is the False Positive�
Conversely, Recall is defined as the proportion of real

positive cases that are correctly predicted as positive:

R = TP/(TP + FN) (4)

where FN is the False Negative.
P and R represent the false alarm rate and missing re-

port rate, respectively, in extreme precipitation forecast-
ing. The larger the P value, the lower the false alarm rate,
while the larger the R value, the lower the missing report
rate.

The F1-score is defined as a harmonic mean of the pre-
cision and recall:

F1− score = 2PR/(P +R) (5)

3.3.2 Bias Score

Bias Score (B-value) is a commonly used scoring method
in precipitation forecasting system, that is:

B = (TP + FN)/(TP + FN) (6)

where a B-value close to 1 represents a small forecast de-
viation�

3.4 Results and Analysis

The performance comparison of different models on F-
Measure are shown in Table 1. As we can see from Table 1,
our ESG model obtains the best results of F1-score, while
NB obtains the best result of precision, and SVM obtains
the best result of recall. By applying ensemble framework,
ESG model combines the complementary advantages of
individual machine learning models in precision and re-
call, achieving relatively good precision and recall simul-
taneously, thus obtaining the best F1-score. The relative
improvement of F1-score of our ESG compared to Auto-
former, SVM, NN, NB, AR and SMA are 42.1%, 5.9%,
10.2%, 25.6%, 157.1% and 260%, respectively. We also
see that for the time series models using only precipita-
tion series data, Autoformer significantly outperforms the
traditional time series models.

We then observe the comparison of forecast deviation
B-value of the single machine learning models and the en-
semble ESG. From Figure 3, it can be seen that the ESG
model achieved the best prediction bias, with a B-value of
only 1.30, while the B-value of the SVM model is as high
as 1.91. An excessively high B-value also represents too



TABLE 1. F-Measure performance comparison of different mod-
els

Models Metrics
Precision(P) Recall (R) F1- score

SMA 0.24 0.11 0.15
AR 0.35 0.15 0.21
NB 0.65 0.32 0.43
NN 0.57 0.43 0.49
SVM 0.39 0.74 0.51
Autoformer 0.62 0.28 0.38
ESG (ours) 0.48 0.62 0.54

FIGURE 3. B-value comparison of different models

many false forecast. Both NN and NB models tend to be
conservative, resulting in forecast biases below 1. In par-
ticular, the B-value of the NB is only 0.49, which means
that the total number of extreme precipitation forecasts
(including accurate and inaccurate forecasts) is only half
of the actual number of extreme precipitation forecasts,
leading to a low recall rate of only 0.32 and serious under-
reporting.

4 Conclusion

In this paper, an ensemble learning framework using
stacked generalization is proposed for basin extreme pre-
cipitation forecasting. Experiments on Dongjiang river
basin show that our approach with extensive feature en-
gineering is more effective compared with traditional time
series methods, single machine learning models and even
deep learning time series model. Although only precipi-
tation series data was used, the deep learning time series
model showed competitive performance. Therefore, future
work will mainly focus on how to integrate the deep learn-
ing time series model into the ensemble framework.
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