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Abstract:

Real-world data often exhibits serious class-imbalance
and is associated with multi-label settings. To manipulate
the deep model adaptable to this scenario, existing works
intend to perform conventional re-sampling for balanced
predictions.  However, the label co-occurrence and over-
fitting in tail classes typically limit their generalization
ability. In this work, we proposed a novel approach named
Head-Middle-Tail Network (HMT-Net) by assembling the
training of different class groups and assigning group-wise
feature augmentation. Specifically, HMT-Net leverages class
frequency to partition the label space into head, middle,
and tail groups and applies group-specific perturbations to
the corresponding features, where stronger perturbations are
introduced for tail classes to enhance their representational
diversity. Experiments on widely used benchmarks verify the
performance of HMT-Net is comparable with the SOTAs.
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1. Introduction

The rapid advancement of artificial intelligence has led
to significant successes in deep learning models across var-
ious domains of biomedical informatics [?, ?, 7, ?]. How-
ever, there are two major limitations in the training of
these models: first, the training data is often assumed
to be class-balanced; and second, it is typically assumed
that each sample corresponds to a single label. In reality,
biomedical data rarely aligns with these assumptions; it
is inherently imbalanced and often associated with mul-
tiple co-occurring labels [?]. Under these more complex

and realistic conditions, existing models frequently experi-
ence performance degradation, particularly when it comes
to identifying rare classes and capturing the interdepen-
dence among multiple labels. This situation underscores
the need for more robust approaches that can effectively
manage long-tail distributions and multi-label scenarios in
biomedical settings.

Long-tailed multi-label problems are common in
biomedical informatics. To address this, several studies
have been proposed to enhance the representational capac-
ity of models. For example, Debby et al. conducted a com-
prehensive review on structure-based protein-ligand bind-
ing affinity prediction, with a particular focus on molecular
representation techniques [?]. Wang et al. introduced In-
termolecular Contact Profiles (IMCPs), a concise and in-
terpretable descriptor that significantly enhances feature
expressiveness for protein-ligand complexes [?]. Wang et
al. proposed proteo-chemometrics interaction fingerprints
(PrtCmm IFPs) to enhance feature representation and
improve predictive performance in protein—ligand binding
affinity modeling [?]. In disease prediction using clinical
records, models are typically expected to predict one or
more disease labels. Although common diseases such as
diabetes and hypertension are prominent in training data,
rare diseases, such as rare genetic disorders, occur infre-
quently but must still be regarded as valid labels.

To address these challenges, recent studies have utilized
re-sampling to improve skewed predictions by increasing
the sampling probability of tail classes during mini-batch
construction [?]. However, this line of approaches faces
two significant limitations in multi-label scenarios. In
multi-label settings, a single instance can belong to both
head and tail classes simultaneously. When we replicate
these instances to over-sample tail classes, we inadver-



tently increase the frequency of head classes as well, which
fails to achieve the balance in label distribution. Also, re-
sampling merely reinforces learning from the limited set of
examples and does not fundamentally enhance the feature
space of tail classes. This can lead to overfitting on tail
classes, particularly when there is a severe lack of data.

In this paper, we propose a novel framework named
Head-Middle-Tail Network (HMT-Net). By assigning in-
dependent parameter spaces for different class-groups,
HMT-Net significantly reduces the gradient interference
from head classes on the learning of tail classes. Addition-
ally, it enhances the diversity of features for tail classes in
a more natural manner while avoiding label co-occurrence.
Our contributions can be summarized as follows:

e We introduce HMT-Net, a new architecture specif-
ically designed for long-tailed multi-label learning,
which simultaneously considers both label frequency
and co-occurrence.

e We implement a group-aware parameter decoupling
strategy that eliminates the feature entanglement be-
tween head and tail classes.

o Extensive experiments are conducted across multiple
benchmark datasets, demonstrating the effectiveness
of proposed HMT-Net.

The rest of this work is organized as follows: In sec-
tion 2, a review of related works is discussed. In section
3, our proposed HMT-Net is described in detail. In sec-
tion 4, the experimental analysis of our model and related
comparisons are given. Finally, a summary is outlined in
section 5.

2. Related Work

Long-tailed learning has been a persistent challenge,
traditionally focusing on single-label data. However, in re-
cent years, the study of long-tailed multi-label learning has
gained attention to better reflect real-world conditions.

2.1 Long-tailed Single-label Classification

Typical works for addressing the long-tailed single-label
classification can be divided into three main approaches:
(1) Re-sampling: The re-sampling-based methods encour-
age constructing balanced mini-batches by either over-
sampling tail classes or under-sampling the head classes.

For instance, [?] simply duplicates samples from the minor-
ity class to enhance the learning process for tail classes. [?]
proposed removing partial instances in head-class spaces
to yield balanced predictions. (2) Re-weighting. The re-
weighting approaches aim to rescale the loss function ac-
cording to the varying frequencies of different classes. [?]
suggested adjusting costs in proportion to the inverse fre-
quency of each class. (3) Two-stage fine-turning. This line
of research divides feature learning and classifier learning
into two distinct stages. In [?], a framework named ProCo
performs contrastive learning using different global views
of images, and a linear classifier is fine-tuned on top of the
learned backbone.

2.2 Long-tailed Multi-label Classification

In real-world applications, an image could be associ-
ated with multiple labels. In such scenarios, long-tailed
problems are more complicated when faced with label co-
occurrence and the over-suppression of negative gradients.
Consequently, long-tailed multi-label classification has at-
tracted increasing attention in recent years. [?] proposed
the DB loss, which innovates re-sampling in multi-label
data while considering the negative gradient constraint.
Inspired by re-weighting, some cost-sensitive methods are
introduced such as DR loss [?]. Also, [?] assemble models
to generating balanced predictions, to generate balanced
predictions, where individual models handle classes with
similar instance scales.

3. Methodology

Details for HMT-Net can be referred in Figure.2. Sup-
pose the used dataset is D = {(x',y")}¥,, where N is
the number of training samples, x* € R? represents the
input feature, and y* = [y}, ys,...,y5] € {0,1} is the
corresponding label with C' denoting the total number of
classes. Let ny = va:l y}c denote the number of training
examples that contain class k. It should be noted that
N < 210:1 n; since a single input could associated with
multiple labels. The goal of multi-label classification is
to learn a mapping f : R? — {0,1}¢ that predicts the
probability of each label for a given input.

3.1 Class Partition

Different from conventional multi-label classification
methods, HMT-Net partitions the classes into head, mid-
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FIGURE 1. The framework of proposed BENet.

dle, and tail classes based on the number of training sam-
ples associated with each class. Specifically, let 7, and
Tm be the thresholds for distinguishing head, middle, and
tail classes, where 73, > 7,,. Based on the thresholds, we
define the sets of head, middle, and tail classes as fol-
lows: 1) Head class set: C, = {k | ny > 7}, containing
classes with sufficient training samples. 2) Middle class
set: Cp, = {k | T < ni < 73}, containing classes with
a moderate number of training samples. 3) Tail class set:
Ct = {k | nx, < 7n}, containing classes with little training
samples. With the above partition, we can subsequently
allocate different parameter spaces to the classes in each
group. The partition of different groups is commonly used
in the single-label long-tailed problem. For the first time,
HMT-Net offers a solution to apply the concept of class
partition in multi-label long-tailed problems.

3.2 Feature Augmentation

To enhance the number of training samples for tail
classes in multi-label long-tailed classification, existing
methods generally utilize re-sampling strategies to in-
crease the likelihood of selecting tail-class instances dur-
ing the mini-batch construction. However, these methods
merely replicate existing samples, resulting in unchanged
feature spaces. Consequently, re-sampling-based models
often overfit the already-known tail-class samples during
training.

To address this limitation, it’s essential not only to in-
crease the number of training samples for the tail classes
but also to improve the diversity of their feature represen-
tations. For the first time, HMT-Net realizes this goal by
introducing specialized perturbations for feature spaces,
and the perturbations guide the model to learn potential
representations of tail classes. Specifically, let f € RY
denote the high-level feature extracted by a backbone. In

the former settings, we have already categorized all classes
into three groups: head (C), middle (C,,), and tail (C;).
Let n. denote the number of samples in class ¢ € C. For
each group g € {h,m,t}, the perturbation coefficient o is
defined as Eq.(1), i.e.,
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where ) is a scaling hyperparameter and |C4| is the num-
ber of classes in group g. The coefficient guarantees that
the perturbation strength is inversely proportional to the
average sample count in each group. Based on this coeffi-
cient, we define group-specific perturbations as Gaussian
noise, as shown in Eq.(2), i.e.,

8y ~ N(0,071), g€ {h,m,t} (2)
The perturbed high-level features for each group are de-
fined as Eq.(3), i.e.,

f‘g =f+4, (3)
These augmented features for each group are passed
through their respective classifier branches, allowing the
model to learn distinctive representations.

3.3 Parameter Assignment

Based on Eq.(3), we apply three levels of Gaussian per-
turbation to the extracted high-level features. However, in
its basic form, these perturbations are applied uniformly
across all feature dimensions, without considering the spe-
cific group to which the associated features belong. To ad-
dress this issue, HMT-Net introduces a structure that as-
signs different classification heads to manage various per-
turbed features. Each classification head predicts labels



specific to its group, effectively filtering and representing
the related features. Specifically, the classification scores
of group g € {h,m,t} is defined as Eq.(4), i.e.,

Sg = ]:g(f‘g)vsg € RIS (4)

where Fy is the classification head for group g, and s, is
the predicted score vector over the classes in C4. The next
step involves merging the scores specific to each group for
inference. Through this structured perturbation-to-head
mapping, HMT-Net enables perturbations of different in-
tensities to be explicitly associated with the class groups.

3.4 Prediction Fusion

In realization, for each group, we apply the well-known
Binary Cross-Entropy (BCE) loss between the predicted
scores and the corresponding ground-truth label vector
v, € {0,1}/%  as shown in Eq.(5), i.e.,

1Col
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L, = T Y [Yg.ilog(sgi) + (1 = yg.i) log(1 = s4.4)]
gl =1

()
where s, ; is the predicted probability for the i-th class
in group g, and y,; is the corresponding ground-truth bi-
nary label. To facilitate collaborative inference across the
entire label space, we combine the outputs from the three
heads into a global prediction vector § € RI¢l. This process
involves mapping each dimension of s, back to its corre-
sponding class index within the complete label set C. The
fused prediction § is compared with the original ground-
truth vector y € {0, 1}‘C| to compute a global BCE loss,
as shown in Eq.(6), i.e.,

IC]
1 . .
Eglobal = _m E [y] . IOg(Sj) + (1 - y]) : 10g(1 - S])]
Jj=1

(6)
The total loss term is formulated as a weighted combi-
nation of the global loss and the group-specific losses, as

shown in Eq.(7), i.e.,
> L

g€{h,m,t}

Eall = n‘cglobal + (]- - 77) (7)

where 1 € [0, 1] is a balancing hyperparameter.
4. Experiment

In this section, we assess the effectiveness of HMT-Net
through comparative experiments and parameter analysis

on long-tailed multi-label datasets.
4.1 Datasets

Two commonly used long-tailed multi-label benchmarks
are employed: VOC-LT and COCO-LT. They are subsets
artificially sampled from the Pascal Visual Object Classes
Challenge (VOC) and Microsoft COCO (MS-COCO), fol-
lowing a Pareto distribution defined by the probability
density function pdf(z) = aizﬁ”{. Following [?], VOC-
LT is constructed with o = 6 and comprises 1,142 images
across 20 classes. Within this set, the class with the fewest
samples contains only 4 images, while the largest class has
775 samples. We utilize the test set VOC2007, which con-
sists of 4,952 test images, for model evaluation. Similarly,
COCO-LT is also created with o = 6 and includes 1,909
images spanning 80 classes. The class with the most im-
ages contains 1,128, whereas the class with the fewest has
merely 6 images. For evaluation, we use the testing set
from COCO2017, which comprises 5,000 images.

4.2 Basic Settings

The Resnet50 pretrained on ImageNet is used as back-
bone. The SGD optimizer is employed with a momentum
of 0.9, and weight decay is configured at 1 x 10™%. The ini-
tial learning rate is set to 0.02, utilizing a warm-up learn-
ing rate schedule for the first 500 iterations at a ratio of %
Training with re-sampling runs for 8 epochs, with learning
rate decays at the 5th and 7th epochs. Training without
re-sampling runs for 80 epochs, with learning rate decays
at the 55th and 70th epochs. The re-sampling strategy
follows the guidelines in [?]. This training implementation
uses PyTorch version 1.10, and the networks are trained
on NVIDIA Tesla V100.

4.3 Comparison

Classes with more than 100 samples are identified as
head classes, those with 20 to 100 samples are considered
medium classes, and categories with fewer than 20 samples
are marked as tail classes. We evaluate the mean average
precision (mAP) across all classes and also report the mAP
for each group of classes.

Results on VOC-LT. The experimental results for VOC-
LT are presented in Table 1. HMT-Net demonstrates the
best performance among all compared methods, showcas-
ing the superiority of our approach. Specifically, com-
pared to the previous state-of-the-art model, DB Focal,



TABLE 1. The mAP comparison results on VOC-LT

Methods Head Mid Tail All
ERM 68.91 80.20 65.31 70.86
RW 67.58 82.81 73.96 74.70
RS 70.95 8294 73.05 75.38
Focal Loss [7] 69.41 8143 71.56 73.88
LSEP [7] 69.00 79.83 70.88 72.99
ML-GCN [7] 70.14 76.41 62.39 68.92
LDAM [7] 68.73 80.38 69.09 70.73
CB Focal [7] 70.30 83.53 72.74 75.24
Circle Loss [?] 70.00 82.00 73.88 75.20
DB Focal [?] 72.67 83.17 78.75 78.29
ASL Loss [?] 70.70 82.26 76.29 76.40
ZLPR Loss [7] 71.00 82.67 72.38 75.10
BalPoE (7] 69.00 82.17 71.00 73.76
HMT-Net (Ours) | 73.44 83.86 79.33 78.92
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FIGURE 2. Long-tailed multi-label problems in medical areas.

our proposed method improves mAP score by 0.77% for
head classes, 0.69% for middle classes, and 0.58% for tail
classes. Additionally, when compared to the latest dual-
expert system for long-tailed multi-label learning, BalPoE,
our framework shows significant improvements of 4.44%
for head classes, 1.69% for middle classes, and 8.33% for
tail classes. Notably, HMT-Net achieves the highest per-
formance on tail classes, reaching an mAP of 79.33%.

Results on COCO-LT. The results on COCO-LT are
presented in Table.2. HMT-Net achieves an overall mAP
of 53.80% and demonstrates the best performance among
all compared methods. Compared with DB Focal, HMT-
Net improves the mAP on tail classes by 0.84%, indi-
cating more balanced predictions. BalPoE also employs
different parameter spaces for various distributions, while
HMT-Net novelly addresses the overlooked middle classes
and emphasizes the feature perturbations on tail classes.
Consequently, HMT-Net outperforms BalPoE by a large
margin, achieving improvements of 3.78% in overall mAP,
2.64% in head classes, 2.50% in middle classes, and notable
6.40% in tail classes.

TABLE 2. The mAP comparison results on COCO-LT

Methods Head  Mid Tail All

ERM 48.48 49.06 24.25 41.27
RW 48.62 45.80 32.02 42.27
RS [7] 47.58 50.55 41.70  46.97
Focal Loss [?] 49.80 54.77  42.14  49.46
LSEP [7] 46.18 5091 42.88  47.05
ML-GCN (7] 44.04 48.36 38.96 44.24
LDAM [?] 48.77  48.38  22.92  40.53
CB Focal [7] 4791 53.01 44.85 49.06
Circle Loss [?] 48.64 55.52 50.28  52.00
DB Focal [?] 50.91 56.58 51.52 53.45
ASL Loss [7] 49.05 53.65 46.68 50.21
ZLPR Loss [?] 47.59 53.73 47.00 49.90
BalPoE [?] 48.45 54.18 4596  50.02
HMT-Net (Ours) | 51.07 56.68 52.36 53.80

4.4  Further Analysis

To investigate the effect of perturbation intensity on
model performance, we vary the value of A\, which controls
the magnitude of the perturbation, and assess the mAP
scores on VOC-LT. The results are presented in Figure.2.
When the perturbation is set to 0, the model achieves an
mAP of 78.38%, which already exceeds the performance of
current methods. This improvement can be attributed to
our proposed three-branch architecture, which effectively
reduces the gradient dominance of head classes over tail
classes during training. As the value of A increases, the
mAP improves significantly, reaching a peak of 78.92%
when A\ = 2. However, further increasing the perturbation
introduces excessive noise, which disrupts the original fea-
ture space.

5. Conclusions

In this paper, we tackled the challenge of long-tailed
multi-label learning in biomedical informatics, where con-
ventional re-sampling struggles to resolve the feature re-
dundancy and gradient interference. The proposed HMT-
Net leverages group-aware parameter decoupling and tar-
geted feature augmentation to independently optimize
head, middle, and tail classes. Extensive experiments on
multiple benchmarks demonstrate that HMT-Net outper-
forms existing methods, especially in accurately predict-
ing tail classes. These findings highlight the potential of
HMT-Net for improving diagnosis accuracy in real-world
biomedical applications. In future work, we plan to ex-
plore adaptive grouping strategies to enhance the trans-
ferability of HMT-Net.
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