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Abstract:
Electric vehicles (EVs) are the key solution for achieving

zero-carbon emissions in transportation and play an essential
role in global climate change mitigation. However, large-scale
EV integration introduces major challenges for power grid sta-
bility and energy management due to increasingly complex and
decentralized charging and discharging behaviors. Traditional
centralized optimization methods face difficulties in addressing
privacy concerns and meeting the scalability needs of practical
applications. To overcome these issues, this paper proposes
a federated learning-based strategy that enables collabora-
tive optimization among multiple EVs or charging stations
without sharing raw data, thus protecting user privacy. By
leveraging distributed data and computational resources,
this approach adapts to diverse user behaviors and grid
conditions and reduces communication overhead. Through a
simulated case, the effectiveness of the model has been ver-
ified, which also demonstrates strong potential as a scalable,
privacy-preserving framework for intelligent EV charging and
discharging management in future zero-carbon energy systems.
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1 Introduction

The rapid electrification of the transportation sector is
a key strategy for reducing greenhouse gas emissions [1].
This transition is essential for achieving global carbon neu-
trality targets [2]. Electric vehicles (EVs) are being inte-
grated into energy and mobility systems at an unprece-
dented rate [3]. This growth is driven by technological

advances and supportive public policies. Many studies
have shown that widespread EV adoption improves urban
air quality [4]. It also accelerates progress toward decar-
bonization goals at both national and regional levels. De-
spite these benefits, large-scale EV deployment introduces
significant challenges for power systems[5]. These chal-
lenges include increased peak loads, voltage fluctuations,
and greater privacy concerns [6]. Therefore, it is crucial
to optimize charging and discharging strategies for EVs.
This optimization supports the sustainability, resilience,
and efficiency of modern energy infrastructure.

Most traditional approaches to EV charging and dis-
charging optimization use centralized architectures [7].
These methods rely on techniques such as genetic al-
gorithms, particle swarm optimization[8], and reinforce-
ment learning (RL) [9]. Classical optimization meth-
ods include linear programming, mixed-integer program-
ming, and heuristic algorithms. Centralized schemes of-
ten face risks such as privacy leakage and single points
of failure. Distributed optimization algorithms can help
address these issues[10]. However, they still encounter
difficulties with coordination efficiency, communication
overhead, and scalability. These problems are especially
pronounced in heterogeneous and dynamic environments.
With the development of artificial intelligence, recent ad-
vances in intelligent algorithms have improved EV charg-
ing and discharging management. Reinforcement learning
(RL) and deep reinforcement learning (DRL) are highly
adaptable[11]. They perform well under dynamic pric-
ing, uncertain demand, and complex system constraints.
Policy gradient, Q-learning, and actor-critic algorithms
have achieved strong results in real-time scheduling and
decision-making[12]. However, these approaches usually
require sharing large amounts of data and centralized



training. This can compromise user privacy and system
security.

Federated learning (FL) is a promising solution for
privacy-preserving and scalable collaborative optimization
in smart grids [13]. FL allows multiple agents to train
models together without sharing raw data. This method
addresses privacy and security concerns directly. When
federated learning is combined with reinforcement learn-
ing, the result is called federated reinforcement learning
(FedRL). FedRL increases adaptability and robustness in
distributed optimization. It works well in dynamic and
uncertain conditions. FedRL has shown potential in EV
charging and discharging scenarios. It helps balance global
system objectives with local user preferences. However,
current solutions are still limited in managing large-scale
and heterogeneous EV networks. The challenges become
greater when user behavior changes rapidly or electricity
prices fluctuate. It is difficult to achieve optimal perfor-
mance, privacy protection, and computational efficiency at
the same time. These frameworks should use the strengths
of federated learning and advanced reinforcement learning
algorithms for EV charging and discharging optimization.

This paper presents FedRL-EV, which stands for
Federated Reinforcement Learning for Electric Vehicles.
FedRL-EV is a distributed optimization framework for
EV charging and discharging. It is based on feder-
ated reinforcement learning. The FedRL-EV framework
integrates federated learning with policy gradient rein-
forcement learning. This combination enables efficient,
privacy-preserving, and scalable scheduling across multi-
ple charging stations. The main contributions of this work
are as follows. First, a FedRL-EV framework support-
ing collaborative learning among multiple charging sta-
tions is designed to protect user privacy. Second, a policy
gradient-based charging and discharging scheduling algo-
rithm is developed, tailored for large-scale and dynamic
scenarios. Third, comprehensive simulation studies are
conducted to validate the effectiveness and scalability of
the proposed approach. The rest of this paper is struc-
tured as follows. Section 2 describes the problem formula-
tion and methodology. Section 3 presents the experimen-
tal results and analysis. Section 4 concludes the paper and
discusses future research directions.

2 Problem Formulation

This section presents the collaborative charging and dis-
charging optimization framework for multiple electric ve-

hicles (EVs) based on federated learning. The proposed
approach emphasizes distributed, privacy-preserving, and
scalable multi-agent coordination under time-of-use elec-
tricity pricing, aiming to maximize overall system eco-
nomic benefits while accounting for battery aging and op-
erational constraints.

2.1 Research Strategy

A federated multi-agent learning paradigm is adopted,
where each EV independently trains its local policy and
only uploads model parameters to a central aggregator.
The methodology consists of the following key compo-
nents:

2.1.1 Federated Multi-Agent Modeling

The multi-EV charging/discharging problem is formu-
lated as a federated multi-agent decision process. Each
agent i observes its local state si,t and independently
updates its policy πθi . Agents periodically upload their
model parameters to a central server, which aggregates
them to form a new global model, subsequently distributed
to all agents for further local training. The aggregation
rule is as follows:

θ
(g)
k+1 = A

(
{θ(i)k+1}

N
i=1

)
(1)

where θ(g)k+1 denotes the global model parameters after the
(k + 1)-th aggregation, θ(i)k+1 is the locally trained model
parameters of agent i, N is the total number of agents, and
A(·) represents the aggregation operator (e.g., weighted
averaging).

2.1.2 Privacy-Preserving Collaborative Optimization

To ensure data privacy, all raw states, actions, and re-
ward trajectories remain local, in which only model weight
differences or gradients are exchanged. The federated op-
timization objective minimizes the average loss across all
agents:

min
θ

1

N

N∑
i=1

Esi,t,ai,t
[Li (πθ(ai,t|si,t))] (2)

where θ denotes the globally shared policy parameters,
Li(·) is the local loss function for agent i, si,t and ai,t
are the local state and action at time t, πθ(ai,t|si,t) is the
probability of taking action ai,t in state si,t under policy
parameter θ, and E denotes the expectation operator.



2.1.3 Simulation and Validation

A distributed simulation environment is constructed,
with each EV agent interacting with its own local en-
vironment. The system supports asynchronous partic-
ipation, heterogeneous data distributions, and dynamic
fleet sizes. The performance of the federated approach
is benchmarked against centralized and isolated (non-
collaborative) optimization schemes.

2.2 Model Preprocessing

2.2.1 Local State Representation

The local state of each agent at time t is encoded as:
si,t = [ϕ1(t), ϕ2(SOCi,t), ϕ3(pt), ϕ4(∆Ei,t), ϕ5(ηi,t)] (3)

where si,t is the local state vector of agent i at time t,
ϕ1(t) is a time feature extraction function, ϕ2(SOCi,t) is
the normalized state-of-charge (SOC) feature, ϕ3(pt) is the
time-of-use price feature, ϕ4(∆Ei,t) is the energy incre-
ment feature, and ϕ5(ηi,t) is the battery health feature.

2.2.2 Action Space

The action space for each agent is defined as:
ai,t ∈ A = {charge, idle, discharge} (4)

where ai,t denotes the action chosen by agent i at time t,
and A is the set of possible actions: charging, idling, and
discharging. Each action corresponds to a fixed power
level, such as Pcharge and Pdischarge for charging and dis-
charging power (e.g., 50 kW).

2.2.3 Constraint Handling

All agent actions must satisfy the following local and
global constraints:

SOCmin ≤ SOCi,t+1 ≤ SOCmax (5)∣∣∣∣∣
N∑
i=1

Pi,t

∣∣∣∣∣ ≤ Pmax
grid (6)

SOCi,tcommute
≥ SOCcommute (7)

where SOCmin and SOCmax are the minimum and max-
imum allowable state-of-charge, SOCi,t+1 is the SOC of
agent i at time t+1, Pi,t is the charging/discharging power
of agent i at time t, Pmax

grid is the maximum grid power limit,
SOCi,tcommute is the SOC of agent i at the required depar-
ture time, and SOCcommute is the minimum SOC required
for commuting.

2.2.4 Federated Experience Replay

Each agent locally maintains experience tuples
(si,t, ai,t, ri,t, si,t+1) without sharing any raw data with
other agents or the aggregator.

2.3 Federated Policy Update Mechanism

2.3.1 Local Policy Optimization

Each agent optimizes the following surrogate objective
using its local trajectory data:

Ji(θ) = Eτi

[
T−1∑
t=0

γtri,t

]
(8)

where Ji(θ) is the local policy objective for agent i, τi
is the complete trajectory of agent i, T is the decision
horizon, γ is the discount factor (0 < γ ≤ 1), and ri,t is
the immediate reward at time t.

2.3.2 Federated Aggregation Protocol

After E rounds of local updates, agents upload their
parameters θ(i) to the server, which aggregates them using
the FedAvg protocol:

θ(g) ←
N∑
i=1

ni∑
j nj

θ(i) (9)

where θ(g) denotes the aggregated global model parame-
ters, ni is the number of training samples used by agent
i in this round, θ(i) is the locally updated model parame-
ters of agent i, and

∑
j nj is the total number of samples

across all agents. Here, the left arrow “←” indicates an
assignment or update operation, i.e., the right-hand side
aggregation result is assigned to θ(g) as the new global pa-
rameter, rather than representing a mathematical equal-
ity. This notation is widely adopted in algorithms and fed-
erated learning literature to distinguish variable updates
from equalities.

2.4 Battery Aging and Reward Modeling

2.4.1 Battery Aging Penalty

Battery aging is penalized via a differentiable cost func-
tion:

Cage,i,t = κ · ψ(Pi,t, Ti,t, SOCi,t) (10)



where Cage,i,t is the battery aging cost for agent i at time t,
κ is the cost scaling coefficient, ψ(·) is a nonlinear function
reflecting the impact of power, temperature, and SOC on
aging, and Ti,t is the battery temperature.

2.4.2 Composite Reward Function

The immediate reward for agent i at time t is defined
as:

ri,t = λ1 ·Πi,t − λ2 · Cage,i,t − λ3 · IC(ai,t) (11)

where ri,t is the immediate reward, λ1, λ2, λ3 are weight-
ing coefficients, Πi,t is the net economic benefit, Cage,i,t is
the battery aging cost, and IC(ai,t) is an indicator func-
tion that equals 1 if action ai,t violates constraints, and 0
otherwise.

2.5 Evaluation Metrics

The following metrics are used to evaluate the perfor-
mance of the federated learning framework:

Total Net Profit

PFL =
1

N

N∑
i=1

T∑
t=1

Πi,t (12)

where PFL is the average total net profit under federated
learning, N is the number of agents, T is the simulation
horizon, and Πi,t is the net profit of agent i at time t.

Total Battery Aging Cost

AFL =

N∑
i=1

T∑
t=1

Cage,i,t (13)

where AFL is the total battery aging cost across all agents,
and Cage,i,t is the battery aging cost for agent i at time t.

Constraint Violation Rate

VFL =
1

NT

N∑
i=1

T∑
t=1

IC(ai,t) (14)

where VFL is the constraint violation rate, and IC(ai,t)
indicates whether the action of agent i at time t violates
constraints.

3 Case Studies

To validate the effectiveness of the proposed federated
reinforcement learning (FLRL) based multi-EV charging
strategy, comprehensive case studies were conducted us-
ing simulated data. The federated framework enables
distributed learning and decision-making across multiple
EVs, preserving data privacy while achieving coordinated
optimization. The test environment setup and simula-
tion parameters are summarized in Table 1, with federated
learning specific parameters highlighted.

The case study implemented a scalable policy gradi-
ent framework within a federated learning architecture.
Each EV agent performs local policy updates using its
own data, and periodically synchronizes model parame-
ters with a central aggregator via the FedAvg algorithm.
The simulation environment is implemented in Python
with TensorFlow 2.10.1 and GPU acceleration. The policy
network adopts a three-layer architecture (128-64-3) with
experience replay, ensuring stable convergence and effi-
cient training. The federated approach demonstrated sig-
nificant economic benefits and privacy preservation, with
each EV achieving an average daily profit of 60.08 yuan
by strategically charging during off-peak (23:00-07:00) and
discharging during peak (10:00-14:00, 17:00-21:00) peri-
ods. The charging control system operates at a 15-
minute resolution, with 50 kW power and 20%-90% SOC
constraints, optimizing charging for 10 & 20 Tesla EVs
(78.4 kWh battery) while considering battery degradation
via an integrated aging model.

3.1 Electricity Pricing

The time-of-use (TOU) electricity pricing scheme is
characterized by distinct peak and off-peak periods. The
federated strategy leverages this structure by coordinat-
ing EV charging and discharging actions among clients.
Specifically, EVs are scheduled to charge during off-peak
hours (23:00–07:00) and discharge during peak periods
(10:00–14:00, 17:00–21:00). This coordination is achieved
without exchanging raw data between EVs, thus safe-
guarding user privacy. At the same time, such a strategy
contributes to grid stability by smoothing the overall load
profile. The adopted TOU pricing profile is depicted in
Fig. 1(b).



TABLE 1. Simulation Parameters

Parameter Value

Number of EVs (N) 1, 10, 20
Battery capacity (Ecap) 78.4 kWh
Charging power (Prated) 50 kW (fixed per ac-

tion)
Charging efficiency (η) 0.92
Initial SOC range [20%, 80%]
Minimum SOC (SOCmin) 20%
Maximum SOC (SOCmax) 90%
Time step per episode (T ) 96 (15 min per step)
Trip energy consumption 3.6 kWh (per trip)
Federated aggregation interval (FL) Every 2 local epochs
Local training epochs (FL) 5
Policy network architecture 128-64-3 (hidden

layers)
Learning rate (α) 0.001
Discount factor (γ) 0.99
Training episodes 20, 500
Max grid power (Pmax

grid ) 500 kW
Commuting SOC requirement(SOCcom) 40%
Reward weights (λ1, λ2, λ3) 1, 0.2, 10
Battery aging coefficient (κ) 0.05

3.2 Results and Analysis

Based on the data presented in Fig. 1 and Table 2,
the performance of FedRL and traditional RL in terms
of Net Profit varies across different EV fleet sizes and
training episodes. In the single-vehicle and medium-scale
(10 EVs) scenarios, FedRL demonstrates improvements of
18.1% and 8.6%, respectively, over RL after 20 training
episodes. This suggests that distributed information inte-
gration and collaborative learning can enhance overall eco-
nomic returns in the early stages of training. As the num-
ber of training episodes increases to 500, the Net Profit
gap narrows, with FedRL maintaining only a slight ad-
vantage (1.9% and 3.4% for 1 and 10 EVs, respectively).
This indicates that, under sufficient data and prolonged
training, the impact of privacy protection on policy opti-
mization becomes limited, and both individual and global
strategies tend to converge.

In the large-scale scenario (20 EVs), FedRL initially out-
performs RL by 6.1% after 20 episodes. However, as train-
ing continues to 500 episodes, RL surpasses FedRL, with
Net Profit for FedRL dropping to 729.27 yuan, compared
to 771.70 yuan for RL. This reversal highlights that, as
the fleet size increases and training extends, the privacy-
preserving mechanisms of federated learning restrict the
depth of information integration necessary for achieving
global optimality. Model-level parameter aggregation can-

FIGURE 1. Optimal EV Charging/Discharging Strategy under
Federated Reinforcement Learning

TABLE 2. Comparison of RL and Federated RL Performance
Metrics

Episode EV Net Profit (¥) Total Cost (¥) Total Revenue (¥)

Number RL FedRL RL FedRL RL FedRL

20 1 EV 48.63 57.46 39.50 43.26 88.13 100.72
20 10 EVs 353.33 383.82 565.74 434.53 919.07 818.35
20 20 EVs 660.89 701.41 812.14 708.67 1473.03 1410.08
500 1 EV 60.08 61.22 39.50 39.50 100.72 100.72
500 10 EVs 434.48 449.27 509.77 469.80 944.25 919.07
500 20 EVs 771.70 729.27 776.87 995.56 1548.57 1724.83

not fully capture each agent’s optimal behavior, and the
rising costs of system coordination and information barri-
ers further limit the economic benefits of FedRL in large-
scale, long-term scenarios.

4 Conclusion

In summary, the proposed federated reinforcement
learning framework enables efficient, privacy-preserving,
and collaborative optimization of multi-EV charging and
discharging strategies under time-of-use electricity pric-
ing. The results demonstrate that FedRL enhances over-
all economic benefits and maintains user privacy, partic-
ularly in small to medium-scale scenarios. However, as
fleet size and training duration increase, the advantages
of FedRL diminish due to information barriers and coor-
dination costs. These findings underscore both the po-
tential and limitations of federated approaches for large-
scale, long-term multi-agent energy management applica-
tions. Therefore, future work will further explore methods



to enhance the performance of federated learning in this
context.
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