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Abstract: 
Understanding pediatric brain maturation is essential for 

detecting neurodevelopmental disorders. However, 
quantitative spatiotemporal analysis remains limited in clinical 
practice, particularly using computed tomography (CT). This 
study proposes a perturbation-based deep learning framework 
that estimates brain age from pediatric CT scans while 
revealing region-wise contributions across developmental 
stages. A 3D ResNet architecture is trained on pediatric CT 
images to perform age regression and to enable region-wise 
interpretability through perturbation analysis. Anatomically 
guided perturbation analysis is conducted, consisting of lobe-
wise masking to evaluate major regions. The proposed method 
was validated using head CT data from 201 pediatric patients 
aged 0 to 47 months with five-fold cross-validation stratified by 
age. The model achieved high accuracy with an RMSE of 5.205 
months, an MAE of 4.007 months, and a Pearson correlation 
coefficient (r) of 0.925. The analysis reveals a dynamic posterior 
to anterior shift, with occipital lobe dominance in early infancy, 
emerging parietal lobe contributions in mid-infancy, and 
increasing frontal and temporal lobe importance in later stages. 
To our knowledge, this is the first CT-based study to investigate 
perturbation-driven region-wise interpretability in pediatric 
brain age estimation. The proposed framework offers a 
clinically meaningful approach for early developmental 
assessment. 
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1. Introduction 

The human brain undergoes complex maturation during 

early development, progressing across both space and time. 

Accurately characterizing this process is essential for 

identifying deviations from typical growth trajectories and 

for facilitating early detection of neurodevelopmental 

disorders [1, 2]. Brain regions do not mature uniformly; for 

example, the occipital lobe generally develops earlier than 

frontal areas [3]. Therefore, spatiotemporal characterization 

of brain maturation holds considerable clinical importance. 

While magnetic resonance imaging (MRI) has been the 

dominant modality for studying brain development, 

computed tomography (CT) remains widely used in pediatric 

settings due to its speed, accessibility, and suitability for 

emergency care [4]. However, CT’s relatively poor soft-

tissue contrast makes it difficult to apply conventional MRI-

based developmental markers such as cortical thickness or 

gray matter volume [5]. As a result, CT-based evaluation of 

brain maturation remains limited and largely qualitative.  
Brain age estimation (BAE) provides a quantitative 

index of developmental status by predicting brain age based 

on imaging data. Most BAE studies have relied on MRI and 

predefined structural features such as cortical thickness or 

gray matter volume, which are input into traditional machine 

learning models like support vector regression or ensemble 

methods [6, 7]. These approaches, however, are difficult to 

adapt to CT due to poor soft-tissue contrast. Moreover, they 

often lack interpretability, making it unclear which regions 

contribute to predictions. This is particularly problematic in 

infants and young children, whose brains are still undergoing 

myelination and present even less structural contrast. 
Recent advances in deep learning, especially 

convolutional neural networks (CNNs), have enabled direct 

learning from imaging data without relying on handcrafted 

features. This makes CNNs suitable for analyzing CT scans. 

A few studies have applied CNNs to predict brain age from 

CT and demonstrated promising accuracy. For example, 

Morita et al. [8, 9]. used an AlexNet-based CNN to estimate 

brain age from CT, achieving a root mean square error 

(RMSE) of 6.26 months, and showing that deep learning can 

detect subtle developmental signals beyond the reach of 



 

 

visual inspection. However, these models remain black 

boxes: they lack interpretability and provide little insight into 

the anatomical basis of predictions. Without understanding 

what the model relies on, clinicians are unlikely to trust or 

adopt such tools. Interpretability is therefore critical to 

ensure biological plausibility and clinical acceptance in 

pediatric applications. 
To address this limitation, we propose a perturbation-

based deep learning framework that enables both accurate 

prediction and region-wise interpretability in pediatric CT-

based BAE. The model employs a ResNet34 architecture 

[10] trained on 3D head CT scans from children aged 0 to 47 

months. To evaluate regional contributions, we implement a 

perturbation analysis: lobe-wise masking using anatomical 

masks. By stratifying outcomes across developmental stages, 

the method reveals spatiotemporal shifts in region 

importance, aligning with known maturation sequences. This 

anatomically grounded and quantitatively interpretable 

framework may facilitate earlier identification of 

developmental delays or pathological conditions and support 

more targeted risk assessments or intervention strategies. 
Unlike previous BAE studies that rely on MRI-derived 

features or gradient-based visualization methods such as 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

[11], our framework provides direct, region-specific 

interpretability tailored to CT data. Grad-CAM produces 

intuitive heatmaps but lacks spatial precision and 

quantitative assessment of regional contributions. In contrast, 

our perturbation-based approach systematically masks 

anatomically defined brain regions and directly measures 

their effect on predictions. This strategy (lobe-wise 

perturbation) enables quantitative comparisons across age 

groups and revealing patterns aligned with developmental 

processes. 
While perturbation-based interpretability methods have 

been previously explored [12], many of them operate by 

masking or corrupting arbitrary image patches in 2D 

classification settings, often disregarding anatomical 

boundaries. This reduces spatial specificity, introduces 

biologically implausible alterations, and is poorly suited to 

volumetric medical data or regression tasks. In contrast, our 

framework applies anatomically guided masking to 3D 

pediatric head CT and evaluates its impact on age regression, 

allowing region-wise contributions to be interpreted in 

clinically and developmentally meaningful terms. 

Importantly, we quantify these contributions using changes 

in absolute prediction error, providing a direct and 

interpretable measure of each region’s influence on 

developmental estimation. 
To the best of our knowledge, this is the first study to 

systematically analyze region-wise contributions to BAE 

using pediatric CT data. By integrating perturbation-based 

interpretability with age-stratified analysis, our framework 

bridges the gap between predictive modeling and clinical 

relevance. It not only enhances model transparency but also 

provides developmental insights that are anatomically 

meaningful and quantitatively robust. These findings lay the 

groundwork for future CT-based screening tools to support 

early detection and personalized care in pediatric 

neurodevelopment. 

2. Subjects and Materials 

This study was approved by the Institutional Review 

Board (IRB) of Kobe City Medical Center General Hospital, 

with the requirement for informed consent waived due to its 

retrospective nature. A total of 201 pediatric patients (age 

range: 0 to 47 months) who underwent non-contrast head CT 

were included. All scans were reviewed by board-certified 

radiologists to confirm the absence of structural 

abnormalities that could affect global brain maturation, such 

as hydrocephalus or mass lesions. Each CT scan consisted of 

200 to 300 axial slices with an in-plane resolution of 512 × 

512 pixels. The voxel size ranged from 0.3 mm to 0.6 mm 

in-plane, with a consistent slice interval of 0.625 mm. Scans 

were acquired using standard pediatric protocols, with 

acquisition parameters adjusted by technicians based on 

patient age and head size. Voxel values were recorded in 

Hounsfield units (HU). All images were anonymized prior to 

analysis. 

3. Proposed Method 

3.1. Overall Workflow 

To achieve both accurate BAE and region-wise 

interpretability, we propose a perturbation-based deep 

learning framework tailored for 3D pediatric head CT. While 

conventional perturbation approaches often rely on non-

anatomical masking in 2D classification contexts, our 

method employs anatomically guided masking in 3D 

regression tasks, allowing biologically coherent analysis of 

brain maturation. This workflow consists of input 

standardization, model training using ResNet34, anatomical 

lobe segmentation, region-wise perturbation analysis, and 

statistical evaluation across developmental stages. An 

overview of the framework is shown in Figure 1. 

3.2. Standardization of Pediatric Head CT 

To ensure spatial and intensity consistency across 

subjects, all head CT images undergo a standardized 

preprocessing pipeline based on procedures established in  



 

 

 
FIGURE 1. Overview of the framework in this study. 

previous studies [8]. Non-brain tissues are removed through 

skull stripping, and spatial orientation is normalized using 

principal component analysis (PCA), aligning the brain’s 

principal axes with the coordinate system. Voxel intensities 

are linearly rescaled using percentile-based normalization 

(P-tile method), applied only to the brain region after skull 

stripping, in order to reduce inter-scan variability while 

preserving anatomical contrast. Each scan is then resampled 

to isotropic 0.488 mm spacing and cropped to a fixed volume 

of 128  128  128 voxels centered on the brain. These 

procedures ensure that the input to the deep learning model 

is anatomically aligned and numerically stable across the 

dataset. An example of a head CT before and after 

preprocessing is shown in Figure 2. 

3.3. Brain Age Prediction Model 

A 3D ResNet34 architecture is adopted to perform brain 

age regression from preprocessed CT volumes. 

Chronological age, measured in months, is normalized to the 

range [0, 1] and used as the regression target. The model is 

trained to minimize the mean squared error (MSE) between 

the predicted and actual ages. 
The use of a 3D residual network enables effective 

learning of developmental morphology from volumetric CT 

data, which presents greater challenges than MRI due to its 

limited soft-tissue contrast. This configuration captures 

subtle age-related structural patterns from normalized 

whole-brain CT scans and serves as a compact yet expressive 

baseline for subsequent region-wise interpretability analysis. 

3.4. Anatomical Interpretability Analysis 

To enable anatomical interpretability of brain age 

prediction, this study proposes a perturbation-based masking 

framework that quantifies the contribution of individual 

brain regions. This approach systematically modifies the 

input CT volume and measures its impact on model output. 

The goal is to estimate the spatial contribution of anatomical 

structures to the predicted brain age. Two levels of analysis 

are implemented: lobe-wise masking based on anatomically 

defined regions. 
To identify anatomically defined regions in head CT 

scans, individual brain structures are automatically 

segmented using TotalSegmentator [13-15]. This tool 

extracts anatomical regions, including the frontal, temporal, 

parietal, and occipital lobes, and generates corresponding 

binary masks in which each voxel is labeled as either 

belonging or not belonging to a given region. The four lobes 

serve as regions of interest (ROIs) for masking analysis. 
To evaluate each lobe’s contribution to brain age 

prediction, voxels within the target lobe are replaced with 

uniform random noise in the range [0, 1]. This unstructured 

noise is used instead of zero-masking to mitigate potential 

bias caused by intensity normalization. The modified image 

is then input into the trained regression model, and the 

change in absolute prediction error is calculated as follows: 

𝛥𝐴𝐸𝑙𝑜𝑏𝑒 =  |�̂�𝑚𝑎𝑠𝑘𝑒𝑑 − 𝑦| − |�̂�𝑤ℎ𝑜𝑙𝑒 − 𝑦| (1) 

where �̂�𝑚𝑎𝑠𝑘𝑒𝑑   is the predicted age from the lobe-

masked input, �̂�𝑤ℎ𝑜𝑙𝑒  is the prediction from the unmasked 

input, y is the subject's chronological age. A higher ΔAElobe 

indicates that masking the given lobe leads to a greater 

prediction error, suggesting a greater influence of that region 

on the model’s output. 

3.5. Developmental Trends in Regional Importance  

In addition to anatomical perturbation masking, this 

study proposes a group-level analysis framework to 

investigate developmental trends in regional brain 

Pediatric head CT scans

Lobe-wise perturbation analysis with statistical analysis

(Input : Trained BAE model, Preprocessed CT images, Lobe masks)

Image preparation

BAE framework & perturbation analysis 

CT image preprocessing

Training brain age 

estimation(BAE) model

[Output]
Trained BAE model

Anatomical Lobe Segmentation

(TotalSegmentator)

[Output]
Lobe masks

  
(a) Original non-contrast axial 

CT image. 
(b) Preprocessed CT image with 

anatomical standardization. 
FIGURE 2. Examples of a pediatric CT before and after preprocessing 
(subject age: 43 months). 



 

 

importance for age prediction. Subjects are stratified into 

four groups based on chronological age: 0-11 months, 12-23 

months, 24-35 months, and 36-47 months. The division into 

four non-overlapping age groups is chosen for simplicity and 

to reflect major developmental milestones. However, the 

framework also flexibly accommodates alternative grouping 

strategies, such as overlapping bins or continuous sliding 

windows, enabling finer resolution analyses of 

developmental trends.  
To further enhance the quantitative interpretability of 

the framework, we propose incorporating statistical 

validation of regional contributions through paired 

comparisons. For each subject, the absolute prediction error 

is calculated both from the original whole-brain input and 

from the input in which a specific lobe (frontal, temporal, 

parietal, or occipital) is masked. Paired comparisons are then 

performed between these two conditions to evaluate the 

impact of masking. The pairing structure directly compares 

each subject’s prediction error between the whole-brain and 

lobe-masked conditions, enabling isolation of regional 

contributions while controlling for inter-subject variability. 
Specifically, for each lobe and each age group, the 

distribution of the change in absolute prediction error 

(ΔAElobe) across subjects is first assessed for normality using 

the Shapiro-Wilk test. If the normality assumption is satisfied, 

a paired t-test is applied; otherwise, a Wilcoxon signed-rank 

test is used. In addition, effect sizes for each lobe and age 

group are calculated using Cohen’s d to evaluate the 

magnitude of the observed differences. This process tests 

whether ΔAElobe values are significantly different from zero, 

indicating that masking the given lobe consistently affects 

age prediction performance. 

4. Experimental Results 

4.1. Experimental Setup 

All experiments were conducted on a workstation 

running Ubuntu 20.04, equipped with an NVIDIA GPU 

(model NVIDIA RTX A6000). The primary programming 

environment was Python 3.10.16. Deep learning models 

were implemented using PyTorch Lightning 2.5.0.post0 and 

Torchvision 0.21.0. Image processing was performed using 

SimpleITK 2.4.1 and NumPy 1.26.4. Statistical analyses 

were conducted with SciPy 1.15.2 and scikit-learn 1.6.1. 

Anatomical lobe segmentation was performed using 

TotalSegmentator 2.7.0. 
All head CT scans were preprocessed through skull 

stripping, spatial normalization using PCA, intensity 

normalization with the P-tile method, and resampling to an 

isotropic voxel size of 0.468 mm. Each scan was cropped to 

a standardized volume of 128  128  128 voxels centered 

on the brain. 
The ResNet34 architecture was trained using stratified 

five-fold cross-validation based on subjects’ chronological 

age, enabling balanced age distribution across folds. 

Chronological age was normalized to the range [0, 1] and 

used as the regression target. Training employed the AdamW 

optimizer with a learning rate of 0.0001 and MSE loss 

(MSELoss). The model was trained for 75 epochs with a 

batch size of 4. Random seeds were fixed at 42 to ensure 

reproducibility. 

4.2. Brain Age Prediction Accuracy 

The brain age prediction model achieved robust 

performance across the stratified test five-fold cross-

validation. The RMSE averaged across folds was 5.205 

months, the MAE was 4.007 months, and the Pearson 

correlation coefficient (r) was 0.925. These results 

demonstrate that pediatric brain age can be accurately 

estimated from standardized head CT images despite 

inherent limitations in soft-tissue contrast. 

4.3. Lobe-wise Perturbation and Statistical Analysis 

To quantify the contribution of major anatomical lobes to 

brain age prediction, lobe-wise perturbation analysis was 

performed as described in Section III. Each of the four lobes 

(frontal, temporal, parietal, and occipital) was independently 

masked, and the change in absolute prediction error (ΔAElobe) 

was calculated relative to the unmasked condition.  

TABLE 1. Impact of lobe-wise masking on brain age prediction accuracy 

across age groups. An asterisk (*) indicates statistical significance (p-

value < 0.05). Symbols †, ‡, § indicate effect size magnitudes (Cohen's 

d), categorized as small (0.2 ≤ |d| < 0.5), medium (0.5 ≤ |d| < 0.8), and 
large (|d| ≥ 0.8), respectively. 

Age 

group Mask type ΔAElobe p-values Cohen's d 

0-11 
months 

Frontal Lobe -0.207† 0.233 -0.211 
Parietal Lobe -0.281 0.357 -0.163 

Temporal Lobe -0.049 0.838 -0.036 
Occipital Lobe -0.007 0.957 -0.009 

12-23 
months 

Frontal Lobe -0.575† 0.058 -0.256 
Parietal Lobe -0.203 0.717 -0.048 

Temporal Lobe -0.045 0.916 -0.014 
Occipital Lobe 0.588*,† 0.009 0.361 

24-35 
months 

Frontal Lobe 0.142 0.763 0.041 
Parietal Lobe 2.443*,‡ p < 0.001 0.552 

Temporal Lobe 1.143† 0.074 0.246 
Occipital Lobe 0.291† 0.133 0.206 

36-47 
months 

Frontal Lobe 4.151*,§ p < 0.001 1.705 
Parietal Lobe 7.724*,§ p < 0.001 2.304 

Temporal Lobe 5.555*,§ p < 0.001 1.750 
Occipital Lobe -0.318† 0.067 -0.249 

 



 

 

Subjects were stratified into four chronological age 

groups: 0-11 months, 12-23 months, 24-35 months, and 36-

47 months, as described in Section III. Statistical 

significance of lobe contributions was evaluated within each 

group, and effect sizes were calculated. 
The analysis revealed dynamic shifts in the importance 

of different lobes across developmental stages. In the 

youngest group (0-11 months), masking did not significantly 

affect prediction accuracy for any lobe. This result may 

reflect that, during early infancy, developmental features 

relevant to brain age prediction are highly distributed and 

subtle, making it difficult to isolate lobe-specific 

contributions using CT imaging. 
At 12-23 months, masking the occipital lobe 

significantly increased prediction error (ΔAElobe = 0.588 

months, p = 0.009, d = 0.361), indicating its dominant role 

during early infancy. A notable shift emerged at 24-35 

months: while only the parietal lobe showed a significant 

effect (ΔAElobe = 2.443 months, p < 0.001, d = 0.552), the 

temporal lobe also tended to affect predictions (ΔAElobe = 

1.143 months, p = 0.074, d = 0.246).  
In the 36-47 month group, masking the frontal (ΔAElobe = 

4.151 months, p < 0.001, d = 1.705), parietal (ΔAElobe = 7.724 

months, p < 0.001, d = 2.304), and temporal lobes (ΔAElobe = 

5.555 months, p < 0.001, d = 1.750) all significantly 

increased the prediction error, indicating their dominant 

contributions. In contrast, masking the occipital lobe slightly 

reduced the error (ΔAElobe = -0.318 months, p = 0.067, d = -

0.249), suggesting reduced relevance at this stage. 
These findings, summarized in Table 1, indicate a 

progressive anterior shift in the regions critical for brain age 

prediction, consistent with known neurodevelopmental 

trajectories from primary sensory maturation toward 

association cortex development. 

5. Discussion 

This study investigates how predictive brain regions 

evolve during early brain development based on pediatric CT, 

revealing a dynamic posterior-to-anterior shift in regional 

importance. Our perturbation-based deep learning 

framework not only achieved high accuracy in BAE but also 

provided region-specific insights across different 

developmental stages. 
Transitions in critical brain regions observed in this study 

align with established neurodevelopmental processes [16]. 

The early prominence of the occipital lobe may indicate the 

rapid maturation of primary visual pathways and early 

myelination patterns. As development progresses, the 

increasing importance of frontal and parietal association 

areas around the age of three (36-47 months) corresponds to 

the maturation of language, memory, and higher-order 

cognitive functions. The strong predictive contributions from 

multiple associative regions may reflect the emergence of 

increasingly complex neural networks. Conversely, the 

diminishing impact of the occipital lobe at later stages may 

result from its early maturation plateau, making it less 

informative relative to still-developing regions, or may 

reflect limitations inherent to the model or CT imaging 

modality.  
Our interpretability framework evaluates regional 

contributions based on changes in absolute prediction error 

rather than raw prediction differences. This choice is critical 

for ensuring that evaluation accurately reflects the 

deterioration of predictive performance relative to true 

chronological age. Simple prediction differences can be 

misleading, as masking certain regions may coincidentally 

bring predictions closer to the true value without genuinely 

improving model reliability. By focusing on changes in 

absolute error, our method reliably isolates regions whose 

integrity is essential for maintaining prediction accuracy. 

This design is particularly important for regression-based 

tasks like BAE, where deviations from ground truth carry 

clinical significance. 
Unlike conventional perturbation-based interpretability 

methods like Occlusion Sensitivity [17] which evaluate 

changes in predicted values without direct reference to the 

ground truth, our framework assesses regional contributions 

based on changes in absolute prediction error. Conventional 

approaches are often sufficient for classification tasks but are 

less suited for regression problems like BAE, where accurate 

measurement of deviation from true age is critical. By 

focusing on absolute error shifts, our method mitigates 

global prediction bias and more reliably identifies regions 

essential for maintaining predictive accuracy. 
Compared to previous work by Morita et al. [9], who 

used AlexNet-based CNN to predict brain age from pediatric 

CT with an RMSE of 6.26 months but without regional 

interpretability, our framework achieved a lower RMSE of 

5.205 months while simultaneously providing 

spatiotemporal insights into predictive regions. These results 

demonstrate that our approach improves both predictive 

accuracy and transparency by revealing anatomically 

meaningful developmental patterns. 
This study demonstrates that interpretable deep learning 

models can extract developmental insights even from 

structurally limited modalities like pediatric CT. By 

providing both accurate BAE and region-specific 

interpretability, our framework bridges a critical gap between 

predictive performance and clinical applicability. The ability 

to assess developmental trajectories from widely available 

CT data holds promise for supporting the early identification 

of atypical brain maturation, particularly in settings where 



 

 

access to MRI is limited. Furthermore, by offering 

anatomically grounded explanations for model predictions, 

our approach contributes to enhancing the transparency and 

trustworthiness of medical AI systems in pediatric 

neuroimaging.  
This study has several limitations. The analysis was 

based on a single-center study without external validation, 

and the sample size was modest. The region-masking 

approach may overlook nonlinear or interaction effects, and 

segmentation accuracy could affect results. CT’s limited soft 

tissue contrast may also constrain feature extraction. Future 

work will validate the model in larger, more diverse cohorts 

and explore improved interpretability methods. 

6. Conclusion 

This study proposed a perturbation-based deep learning 

framework for BAE from pediatric CT images, achieving 

high accuracy while revealing dynamic spatiotemporal shifts 

in predictive brain regions. Lobe-wise analysis demonstrated 

early dominance of the occipital lobe, emerging 

contributions from the parietal lobe around two years of age, 

and increasing importance of the frontal, parietal, and 

temporal lobes in later childhood. By quantifying regional 

contributions through changes in absolute prediction error, 

the framework provides interpretable insights that align with 

known neurodevelopmental processes. These results 

highlight the potential of CT-based deep learning for 

transparent and clinically meaningful assessment of early 

brain development. 
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