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Abstract: 
Segmenting targets with ambiguous features in medical 

images poses a persistent challenge for quantitative analysis. 
This is particularly true for stool segmentation in abdominal 
X-rays—vital for the Stool Volume Score (SVS) in 
constipation management—where conventional single-channel 
deep learning methods often struggle. This study investigates 
if incorporating expert-annotated intestinal gas masks as an 
explicit, additional input channel to a U-Net model enhances 
stool segmentation accuracy and SVS reliability. An ablation 
study compared a dual-channel U-Net (X-ray + gas mask) 
against an identical single-channel baseline (X-ray only), using 
the same architectures and training protocols. Performance 
was assessed using the Dice coefficient, Precision, Recall, and 
SVS analysis (Pearson correlation, Bland-Altman agreement). 
The dual-channel model showed an improved Dice coefficient 
(0.726 vs. 0.710) and Recall (0.706 vs. 0.675) compared to the 
single-channel baseline, while Precision was slightly higher for 
the baseline (0.748 vs. 0.747). Crucially, the enhanced 
segmentation by the dual-channel model yielded a stronger 
correlation between predicted and ground-truth SVS (Pearson 
r=0.852 vs. 0.818) and excellent SVS agreement (Bland-
Altman bias: 0.01, limits of agreement: -0.06 to 0.07). Explicit 
gas mask guidance thus improves overall stool segmentation, 
primarily by achieving a more comprehensive capture of stool 
regions, which in turn enables more reliable SVS 
quantification. This dual-channel strategy offers a promising 
approach for objective fecal load assessment in clinical 
practice. 
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1. Introduction 

Accurate segmentation of anatomical structures and 
pathological regions in medical images is indispensable for 
quantitative assessment, diagnostic support, and treatment 
planning [1].  This importance is particularly pronounced in 

clinical scenarios demanding objective metrics for 
evaluating disease status and guiding management 
decisions.  However, in many medical images, "ambiguous 
segmentation tasks" arise due to factors such as low 
contrast of the target region, indistinct boundaries, or 
obscuration by other structures [2]. These ambiguities 
present significant challenges for conventional 
segmentation algorithms, hindering accuracy improvements. 
This issue is a common and universal challenge across 
various modalities and application fields. 

Deep learning, particularly convolutional neural 
networks (CNNs) like U-Net, has achieved remarkable 
success in various medical image segmentation tasks [1].  
However, in the ambiguous cases mentioned above, 
standard approaches relying solely on the primary image 
input often struggle to accurately identify the target regions 
[3]. Local image features alone are often insufficient to 
resolve these ambiguities.  

One promising strategy to improve segmentation 
accuracy in such ambiguous regions is to incorporate 
supplementary information or contextual priors into deep 
learning models. Indeed, studies have shown improvements 
by providing networks with global binary masks outlining 
the target organ's approximate location, which notably 
boosts accuracy in low-data regimes [4].  Others have 
successfully utilized patient-specific prior segmentations 
from earlier scans as an input channel to guide delineation 
in subsequent images, significantly enhancing consistency 
and accuracy, particularly in radiotherapy planning [5].  
Furthermore, incorporating masks of adjacent anatomical 
structures [6] or structural priors derived from other 
modalities or analyses [7] has been explored. These 
approaches collectively suggest that guiding the network 
with explicit spatial constraints or prior knowledge, often 
encoded as binary or probability masks, can effectively 
address challenges posed by ambiguous boundaries or low-
contrast targets by focusing the model's attention and 
leveraging structural relationships. 



 

 

Abdominal radiography (X-ray) is a widely used 
modality due to its accessibility and non-invasive nature. 
However, it presents significant challenges for automated 
image analysis, particularly for segmenting stool regions 
[8]. Stool often appears with low contrast against 
surrounding tissues and has indistinct boundaries, making 
its accurate delineation an ambiguous segmentation task. To 
address this, this study introduces and investigates a deep 
learning approach where expert-annotated intestinal gas 
masks are utilized as an explicit, additional input channel to 
a U-Net model. This dual-channel architecture is designed 
to leverage the clearer structural information from gas 
patterns to improve the segmentation of the more 
ambiguous stool regions within the same X-ray image. 

The primary objective of this research is to 
quantitatively evaluate the effectiveness of this dual-
channel U-Net model (X-ray + gas mask) in enhancing 
stool segmentation accuracy. Specifically, we conduct a 
rigorous ablation study to compare its performance against 
an identical single-channel U-Net baseline (X-ray only) 
which does not receive gas mask guidance. Both models 
utilize the same network architecture and training protocols 
to ensure a fair comparison. Furthermore, we assess the 
impact of improved segmentation on the reliability of 
derived quantitative metrics, such as the Stool Volume 
Score (SVS) [8], for objective fecal load assessment. 

2. Materials and methods 

2.1. Dataset and annotations 

This study utilized a curated dataset of abdominal 
radiographs designed for developing and validating 
automated segmentation models for intestinal gas and stool. 
The dataset encompasses images from a total of 285 unique 
patients (Dataset A: 95 patients, 48 male, 47 female, from 
the former Steel Memorial Hirohata Hospital; Dataset B: 
190 patients from the Hyogo Prefectural Harima-Himeji 
General Medical Hospital), carefully selected to represent a 
diverse range of non-pathological abdominal appearance. 
To ensure the model's ability to generalize across varied 
patient conditions, individuals were included randomly 
from clinical archives, without selection bias concerning 
constipation symptoms or the visually estimated amount of 
gas or stool present; images confirmed to show significant 
lesions were excluded. Stringent anonymization procedures 
were implemented at both sites, with gender and age data 
also masked for the Dataset B cohort to maximize patient 
privacy. 

Image acquisition followed a standardized protocol: all 
radiographs were obtained with the patient in an upright 

stance, positioned 1,000 mm from the X-ray intensifier, 
ensuring consistency. Following acquisition and 
anonymization, each radiograph was manually annotated in 
detail by expert gastroenterologists using the 3D Slicer 
software environment (https://www.slicer.org). Specialists 
meticulously delineated the boundaries of all visible gas 
and stool regions, aided by interactive tools for 
brightness/contrast adjustments and zooming, particularly 
for ambiguous areas such as stool near the liver or in the 
upper pelvic region. Annotators relied on subtle textural 
cues, anatomical continuity, edge characteristics, and 
collaborative peer review for consensus in challenging 
cases, followed by a final verification step to ensure 
dataset-wide consistency. Gas and stool were annotated 
independently as distinct layers to preserve full spatial 
extent information, as they can occupy overlapping spaces 
on a 2D image. This annotated dataset forms the foundation 
for training and evaluating the segmentation models 
presented in this work. Figure 1 shows example images 
from the dataset. 

2.2. Proposed Dual-Channel Guided U-Net 

Figure 2 illustrates the overall architecture of the 
network proposed in this study for stool region 
segmentation. The core of our approach is a U-Net model, 
renowned for its efficacy in biomedical image segmentation, 
featuring a symmetrical encoder-decoder structure. For 
efficient feature extraction, the U-Net employs an 
EfficientNet encoder with weights pre-trained on the 
ImageNet dataset. The decoder upsamples the feature maps 
to generate a pixel-level probability map for the stool class. 

The key innovation of our proposed model is the 
utilization of a dual-channel input strategy designed to 
explicitly provide the network with spatial information 
about gas distribution. Input abdominal X-ray images are 
first resized to 512×512 pixels and normalized to the range 
[0,1]. The network then accepts a two-channel input: 

  
(a) Dataset A (b) Dataset B 

FIGURE 1. Example abdominal X-ray images from Dataset A and B. 



 

 

 Channel 1: The preprocessed abdominal X-ray 
image. 

 Channel 2: A corresponding pre-extracted binary 
gas region mask, derived from expert annotations. 

Our hypothesis is that providing explicit, pixel-level 
information about gas pocket locations offers strong 
contextual cues, enabling the model to better infer the 
extent of nearby or partially obscured stool regions, which 
often have complementary spatial distributions. The 
probability map output from the U-Net undergoes post-
processing, including an aggregation step and subsequent 
binarization using a threshold of 0.5, to obtain the final 
segmented stool region mask image. From this mask, the 
SVS is calculated. 

2.3. Experimental design and protocols 

2.3.1. Ablation study setup 

To evaluate the effectiveness of the gas mask guidance, 
we conducted an ablation study. We compare our proposed 
dual-channel U-Net model (X-ray + gas mask) with a 
baseline single-channel U-Net model that segments stool 
using only the X-ray image as input. Both models share the 
same U-Net architecture with an EfficientNet backbone and 
employ identical data preprocessing, ensuring a fair 
comparison focused solely on the contribution of the gas 
mask input channel. 

2.3.2. Implementation and training details 

To train the network, we utilized the Dice Loss 
function, which is well-suited for segmentation tasks, 
particularly with potentially imbalanced classes. The Dice 
Loss (𝐿𝐷𝐼𝐶𝐸) is defined as: 

𝐿𝐷𝑖𝑐𝑒 = 1 −
1

𝑁
∑

2𝑇𝑃𝑖
2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1
 (1) 

where 𝑁 represents the number of validation images, and 
𝑇𝑃𝑖  denotes the number of true positive pixels for the ith 
image. 𝐹𝑃𝑖  and 𝐹𝑁𝑖  represent the number of false positive 
and false negative pixels for the ith image, respectively. 
Network training was conducted over 200 epochs, utilizing 
a batch size of 16. The initial learning rate was set to 10-3 
and adjusted throughout training using a cosine annealing 
decay schedule. To enhance robustness and prevent 
overfitting, data augmentation techniques, including 
random rotations, flipping, scaling, and translations, were 
applied during the training phase. 

2.3.3. Cross-validation strategy 

A 5-fold cross-validation approach was adopted for 
robust evaluation. In each fold, the data was partitioned into 
60% for training, 20% for validation, and 20% for testing. 
Stratified sampling, based on annotated stool volumes, was 
implemented during data partitioning to mitigate potential 
sample imbalance bias. 

2.4. Evaluation metrics 

2.4.1. Segmentation performance metrics 

Stool segmentation performance was evaluated using 
the Dice coefficient, Recall, and Precision. These metrics 
were calculated based on aggregated true positive (TP), 
false positive (FP), and false negative (FN) pixel counts 
from the entire test set for each fold to account for 
variations in object size and distribution. The definitions are 
as follows: 

𝐷𝑖𝑐𝑒 =
2∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ (2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)
𝑁
𝑖=1

 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖
𝑁
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑁
𝑖=1

 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖
𝑁
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑁
𝑖=1

 (4) 

2.4.2. Stool volume score and agreement analysis 

Building upon our previous work, the SVS was used to 
quantify the relative proportion of stool in the abdominal 
region. The SVS is defined as:  

𝑆𝑉𝑆 =
𝑁𝑠𝑡𝑜𝑜𝑙

𝑁𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙

, (5) 

where 𝑁𝑠𝑡𝑜𝑜𝑙  denotes the number of pixels labeled as stool 
and 𝑁𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙 is the total number of pixels in the 
abdominal region. To assess the reliability of the SVS 
derived from the model's segmentations, we analyzed its 

 
FIGURE 2. Overall architecture of the proposed network architecture. It 
accepts a two-channel input comprising the abdominal X-ray image and a 
pre-extracted gas region mask. The central "Stool evaluation block" 
utilizes a U-Net with an ImageNet pre-trained EfficientNet encoder. The 
U-Net output undergoes post-processing (Aggregation and Binarization) to 
generate the final stool region segmentation mask, from which the Stool 
Volume Score (SVS) is calculated. 



 

 

agreement with the SVS calculated from ground truth 
annotations. This involved calculating the Pearson 
correlation coefficient (r) and performing Bland-Altman 
analysis to evaluate bias and limits of agreement (LoA). 

3. Experimental results and discussion 

3.1. Quantitative segmentation performance 

The quantitative results comparing the stool 
segmentation performance of the baseline single-channel 
model against the proposed dual-channel model with gas 
mask guidance are presented in Table 1. As shown, the 
proposed dual-channel method achieved a Dice coefficient 
of 0.726, compared to 0.710 for the baseline model. The 
proposed model also demonstrated higher Recall (0.706 vs. 
0.675). The baseline model showed slightly higher 
Precision (0.748 vs. 0.747 for the proposed model). 

3.2. Stool volume score analysis 

The clinical relevance of the segmentation 
improvements was further assessed by analyzing the 
derived SVS. The Pearson correlation coefficient between 
the SVS predicted by the proposed dual-channel model and 
the ground truth SVS reached 0.852. This marked an 
improvement over the baseline model, which achieved a 
correlation coefficient of 0.818. Figure 3(a) provides a 
scatter plot illustrating this relationship for the proposed 
method. 

The Bland-Altman plot, shown in Figure 3(b), was 
used to assess the agreement between the predicted and 
ground truth SVS values for the proposed method. The 
analysis revealed a mean difference (bias) of 0.01, 
indicating negligible systematic over- or under-estimation 
of SVS by the proposed model. The 95% limits of 
agreement (LoA) were narrow, ranging from -0.06 to 0.07, 
suggesting good agreement across the range of observed 
stool volumes. 

3.3. Qualitative segmentation examples 

        Figure 4 provides a visual comparison of segmentation 
outputs from the baseline and proposed models on a 
representative challenging case. The proposed dual-channel 

model (X-ray + gas mask), guided by the gas mask input, 
demonstrates higher Recall, indicating that it effectively 
captures more of the true stool regions with fewer missed 
areas (false negatives) compared to the baseline model. 
While its Precision is slightly lower than the baseline, 
suggesting it may include some non-stool areas (false 
positives), the overall Dice coefficient is improved. The 
baseline model (X-ray only), conversely, tends to miss more 
stool regions (lower Recall) despite slightly higher 
Precision. This visual example illustrates the proposed 

TABLE 1. Quantitative comparison of stool segmentation 
performance. Bold indicates the highest values. 

Method Dice Recall Precision 
Single-channel 

(Baseline) 0.710 0.675 0.748 

Dual-channel 
(Proposed) 0.726 0.706 0.747 

  
(a) Raw image (b) Truth image 

  
(c) Single-channel (Baseline) (d) Dual-channel (Proposed) 

FIGURE 4.  Qualitative comparison of stool segmentation results.  Visual 
examples comparing the segmentation output of (c) the baseline model (X-
ray only) and (d) the proposed model (X-ray + gas mask). In challenging 
areas with low contrast, the proposed model (d) effectively identifies more 
of the true stool regions (higher Recall, thus fewer false negatives 
indicated by missed red areas if visualizing errors), demonstrating the 
benefit of gas mask guidance in capturing stool comprehensively. While it 
may result in slightly more over-extracted areas (false positives, 
potentially more blue areas if visualizing errors) compared to its slightly 
higher Precision baseline counterpart (c), the overall balance achieved by 
the proposed method leads to a better Dice score. The baseline model (c) 
shows more instances of missed stool regions (lower Recall). 

  
(a) Scatter plot (b) Bland-Altman plot 

FIGURE 3 Evaluation of SVS predictions. 



 

 

model's strength in achieving comprehensive stool region 
coverage. 

4. Discussion 

4.1. Interpretation of segmentation performance 

The results of our ablation study demonstrate that 
incorporating explicit gas mask guidance as an additional 
input channel to the U-Net model leads to an overall 
improvement in stool segmentation quality, evidenced by 
the increased Dice coefficient (0.726 vs 0.710). This 
improvement is primarily driven by a notable enhancement 
in Recall (0.706 vs 0.675), indicating that the dual-channel 
model is more effective at identifying the true extent of 
stool regions and reducing false negatives. While the 
Precision of the dual-channel model (0.747) was marginally 
lower than the baseline (0.748), the substantial gain in 
Recall contributes to a better overall segmentation 
performance as reflected by the Dice coefficient. This 
suggests that the model, guided by gas mask information, 
becomes more comprehensive in capturing stool, which is 
particularly valuable in ambiguous, low-contrast regions. 
The qualitative results in Figure 4, as discussed in Section 
3.3, visually support these findings, showing the proposed 
model's ability to capture more of the true stool regions, 
even if it occasionally includes some non-stool areas, 
leading to an overall more accurate segmentation. 

4.2. Enhanced reliability of stool volume score 

More significantly, the improvements in segmentation 
accuracy translated directly into a more reliable 
quantification of fecal load via the SVS. The marked 
increase in the Pearson correlation coefficient between the 
predicted SVS (dual-channel model: 0.852) and the ground 
truth SVS (baseline model: 0.818) underscores this 
enhancement. This stronger linear relationship indicates 
that the SVS derived from the gas-guided segmentation 
more accurately reflects the true stool volume. Furthermore, 
the Bland-Altman analysis confirmed excellent agreement, 
with minimal bias (0.01) and narrow limits of agreement (-
0.06 to 0.07), reinforcing the conclusion that the proposed 
method provides a more quantitatively accurate and 
consistent SVS. This is clinically important, as a reliable 
SVS can offer an objective measure for diagnosing and 
managing conditions like chronic constipation. 

4.3. Clinical Significance and Advantages 

The findings suggest that leveraging readily available 

anatomical context, such as intestinal gas patterns, can 
effectively address the challenges of segmenting 
ambiguously defined targets in abdominal X-rays. By 
explicitly guiding the segmentation model with gas mask 
information, our approach improves the delineation of stool 
boundaries, primarily by achieving a more comprehensive 
capture of stool regions, as evidenced by the higher Recall. 
While maintaining a comparable level of Precision to the 
baseline, this enhancement in correctly identifying more of 
the actual stool (higher Recall and Dice) is critical for 
subsequent quantitative analyses like SVS, where under-
segmentation can lead to inaccurate assessments of fecal 
load. The proposed dual-channel strategy offers a practical 
means to improve the objectivity and reproducibility of 
stool assessment from X-rays, potentially aiding clinicians 
in managing chronic constipation more effectively. 

5. Conclusions 

This study investigated the efficacy of incorporating a 
"gas mask" guidance strategy within a U-Net architecture to 
improve the accuracy of automated stool segmentation from 
abdominal X-ray images and enhance the reliability of the 
derived SVS. 

Our findings, derived from a controlled ablation study, 
demonstrate clear advantages of the proposed dual-channel 
approach (X-ray + gas mask) over the conventional single-
channel baseline (X-ray only). The proposed method 
achieved superior overall segmentation quality, reflected in 
an improved Dice coefficient (0.726 vs 0.710). This 
enhancement was primarily attributed to a notable increase 
in Recall (0.706 vs 0.675), signifying the model's improved 
ability to capture the full extent of stool regions. While 
Precision was slightly lower for the proposed method 
(0.747 vs 0.748 for baseline), the significant improvement 
in Recall led to a better overall Dice score, indicating a 
more comprehensive and accurate segmentation. 

Crucially, the improvements in segmentation translated 
directly into more accurate quantitative assessments 
relevant to clinical practice. The correlation between the 
SVS predicted by our model and the ground truth SVS 
showed a clear improvement (Pearson correlation: 0.852 for 
dual-channel vs. 0.818 for baseline). Additionally, the 
Bland-Altman analysis confirmed excellent agreement 
between the predicted and ground truth SVS, characterized 
by a negligible systematic bias (0.01) and narrow limits of 
agreement (-0.06 to 0.07). 

These results strongly suggest that providing explicit 
spatial guidance via the gas mask input allows the model to 
better interpret challenging image features and delineate 
stool boundaries more comprehensively. The enhanced 



 

 

Recall, leading to fewer missed stool regions, and the 
subsequent improvement in SVS reliability underscore the 
value of this guidance strategy. 

In conclusion, the integration of gas mask guidance 
presents a validated and effective method for improving the 
accuracy and reliability of automated stool segmentation 
and SVS calculation from X-ray images. This approach 
holds significant potential for clinical utility, offering a 
more robust tool for objective fecal load assessment in the 
diagnosis and management of conditions such as chronic 
constipation. 
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