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Abstract:
Kerangas forests (tropical heath forests) are nutrient-poor,

fire-prone ecosystems threatened by deforestation and land-
use change. Monitoring these post-disturbance landscapes
is crucial for ecological restoration but remains challenging
due to field inaccessibility and the high resource demands of
conventional deep learning. This study evaluates lightweight
CNNs (MobileNetV1/V2) for classifying Kerangas imagery
into three ecological succession stages. Using transfer learn-
ing and domain-specific data, twelve RGB and grayscale
models were assessed by accuracy, latency, RAM, and flash
usage for edge deployment. MobileNetV2 with 160×160
RGB and α = 0.75 reached 95.8% accuracy, matched by
a 96×96 grayscale model with α = 0.35—which reduced
memory by over 97% and achieved sub-second inference time.
Keywords:

Convolutional neural networks, ecological monitoring, edge
computing, Kerangas forest, transfer learning.

1 Introduction

Kerangas forests are ecologically distinct, with acidic,
nutrient-poor soils and sparse vegetation [1], increasingly at
risk from deforestation, fires, and land-use change in Borneo
and Southeast Asia [2]. Accurate post-disturbance monitoring
is vital for restoration.

CNNs have advanced visual classification [3], but their high
resource needs [4] hinder use in constrained settings. Satellite

data often lack sufficient resolution, and UAVs face operational
limits. Edge devices offer a practical, scalable alternative, es-
pecially in degraded, hard-to-access Kerangas zones. These de-
vices can support low-power CNN models for continuous mon-
itoring.

We investigate lightweight transfer learning models for
Kerangas classification, evaluating MobileNetV1/V2 variants
with different width multipliers on domain-specific images.
Our contributions include: (1) lightweight CNN development,
(2) comparative evaluation of performance and efficiency, (3)
a reproducible classification pipeline, and (4) deployment in-
sights for low-resource environments.

2 Related Work

Recent studies have demonstrated the effectiveness of
lightweight convolutional neural networks (CNNs) combined
with transfer learning (TL) for ecological and agricultural im-
age classification under resource constraints. In agriculture,
TL-based models such as SqueezeNet, InceptionV3, and VGG
variants achieved 96.4% accuracy in rice leaf disease detec-
tion [5], while EfficientNet-Lite4 reached over 90% accuracy
in classifying endemic plant species in Colombia’s Santurbán
paramo [6]. In forest ecosystems, Sentinel-2 imagery has been
used with DenseNet, MobileNetV3, and ShuffleNet for tree
species classification [7], and SqueezeNet demonstrated high
interpretability in noctilucent cloud detection [8].

Beyond agriculture and forestry, lightweight CNNs have
proven effective in edge-focused domains such as biomedical



imaging and embedded systems. MobileNet variants have been
used for breast cancer histopathology [9] and COVID-19 de-
tection [10]. These models have also been deployed on ultra-
low-power platforms like Arduino Nano BLE and nRF52840
for real-time vehicle logo classification [11] and haze detec-
tion [12]. In wireless communication and energy monitoring,
MobileViT and EfficientNet architectures were adapted for sig-
nal classification and GAF-based energy profiling [13]. In
recent developments, PCNet—based on EfficientNetV2—has
been proposed for insect pest classification [14], while Light-
SoilNet, a 2.7M-parameter CNN, outperformed other compact
models for soil classification [15].

Despite these advances, Kerangas forest succession remains
underexplored, particularly with high-resolution, field-acquired
imagery. Moreover, prior studies rarely report resource met-
rics such as memory usage or inference latency—key aspects
for deployment on edge devices. Few also analyze how Mo-
bileNet configurations (e.g., input resolution, width multiplier
α, and modality) influence the trade-off between accuracy and
efficiency. This motivates our investigation into grayscale-
optimized MobileNet variants for on-device classification of
Kerangas ecological succession.

3 Methodology

3.1 Data Collection and Annotation

A total of 162 images were collected through direct field-
work across 30 locations within the districts of Kubu, Ku-
mai, and Kotawaringin Barat Regency. These observations
were conducted during 12 separate field sessions between May
and November, each guided by ecological protocols to ensure
ground-truth relevance to tropical heath forest (Kerangas) con-
ditions. Three visually distinguishable classes were defined
based on post-disturbance ecological succession stages. The
Mid class represents intermediate recovery, characterized by
medium vegetation density with partially established under-
growth and shrubs. The Late class denotes well-recovered
heath forest, marked by dense vegetation cover, mature shrubs,
and closed canopy features. Meanwhile, the No Recovery class
corresponds to severely degraded or recently disturbed land-
scapes—often caused by fire or land conversion—characterized
by minimal vegetation cover and exposed soil.

Image labeling was conducted collaboratively by a team of
three annotators. One of the annotators holds a formal back-
ground in biology and ecological studies, providing ecological
guidance during the labeling process. The classification relied
on observable indicators—such as canopy density, shrub pres-

ence, and soil exposure—defined in alignment with ecologi-
cal succession literature [16]. Annotations were further val-
idated against field notes and photographic documentation to
ensure consistency. Figure 1 illustrates representative samples
from each class. These visual examples help clarify the distin-
guishing ecological characteristics used during the annotation
process. The dataset was split using stratified sampling into
78% training and 22% testing subsets to maintain class balance
across experiments.

FIGURE 1. Representative field images for each ecological class. Left:
No Recovery; Center: Mid; Right: Late.

3.2 Model Architecture and Configuration

To evaluate performance under resource-constrained scenar-
ios, we implemented lightweight CNNs using MobileNetV1
and V2 architectures, optimized for 96× 96 inputs [17]. Width
multipliers (α) were applied to scale model size: V1 with
α = {0.25, 0.20, 0.10} required 105.9–53.2 KB RAM, while
V2 with α = {0.35, 0.10, 0.05} used 296.8–265.3 KB; flash
memory ranged from 101 to 575.2 KB. To ensure consistent
training and avoid domain shifts, models were trained sepa-
rately for RGB and grayscale inputs. All models shared a com-
mon architecture with 96 × 96 × 3 input (grayscale replicated
across channels), a truncated MobileNetV1/V2 backbone, fol-
lowed by global average pooling, dropout (rate = 0.2), and a
softmax classifier for three ecological classes. This modular
design enabled reliable benchmarking across model sizes and
input types.

3.3 Training Procedure

All models were trained using a unified pipeline for
consistency, differing only in backbone architecture (Mo-
bileNetV1/V2 with various width multipliers) and input modal-
ity (RGB or grayscale). Each model used pretrained weights
with input size 96 × 96 × 3; grayscale images were replicated
across channels. The convolutional base was initially frozen,
with a lightweight classification head comprising dropout, flat-
tening, and a softmax dense layer. Training was performed in
two stages: (1) 80 epochs with Adam optimizer (learning rate =



0.0005) and categorical cross-entropy loss, and (2) fine-tuning
for 10 additional epochs after unfreezing 65% of the base layers
with a reduced learning rate (0.000045). All models used batch
size 32, deterministic mode (when enabled), prefetch buffering,
and callbacks for logging and early stopping. The best check-
point from the initial phase was reloaded before fine-tuning.

3.4 Experimental Design

To evaluate the influence of model architecture and input
modality, we conducted a series of controlled experiments in-
volving twelve model configurations: six MobileNetV1 and
six MobileNetV2 variants, each trained separately on RGB and
grayscale datasets. The width multipliers (α) varied across val-
ues of 0.1, 0.2, and 0.25 for MobileNetV1, and 0.05, 0.1, and
0.35 for MobileNetV2. This design allowed us to systemat-
ically assess the trade-offs between input complexity, model
size, and classification performance across different resource
budgets. A summary of the experimental setup is provided in
Table 1.

TABLE 1. Experimental Model Configurations

Model Input Type Width
Multiplier

Notation

MobileNetV1 RGB 0.25 V1-RGB-0.25
MobileNetV1 RGB 0.20 V1-RGB-0.20
MobileNetV1 RGB 0.10 V1-RGB-0.10
MobileNetV1 Grayscale 0.25 V1-GS-0.25
MobileNetV1 Grayscale 0.20 V1-GS-0.20
MobileNetV1 Grayscale 0.10 V1-GS-0.10
MobileNetV2 RGB 0.35 V2-RGB-0.35
MobileNetV2 RGB 0.10 V2-RGB-0.10
MobileNetV2 RGB 0.05 V2-RGB-0.05
MobileNetV2 Grayscale 0.35 V2-GS-0.35
MobileNetV2 Grayscale 0.10 V2-GS-0.10
MobileNetV2 Grayscale 0.05 V2-GS-0.05

4 Results and Discussion

This section presents the performance evaluation of the
lightweight CNN models trained for classifying Kerangas land-
scape imagery. The evaluation focuses on classification accu-
racy, confusion matrices, and resource utilization metrics. Ad-
ditionally, the impact of input modalities (RGB vs. grayscale)
and model architectures (MobileNetV1 vs. MobileNetV2) is
discussed to understand their practical suitability for edge de-
ployment.

4.1 Data Overview and Feature Space Visualization

As detailed in Section III-A, we applied a t-distributed
Stochastic Neighbor Embedding (t-SNE) projection to the test
set embeddings extracted from the penultimate layer of the
best-performing model [18]. Figure 2 presents the 2D feature
space, where circles represent ground-truth labels and squares
denote predicted classes. The axes are labeled as t-SNE 1 and
t-SNE 2. The plot reveals three well-formed and relatively
separable clusters corresponding to the ecological succession
stages: Late, Mid, and No Recovery. Minor overlaps, particu-
larly involving Mid, are expected due to the transitional nature
of these classes.

FIGURE 2. t-SNE visualization of test samples across three classes. Cir-
cles denote ground-truth labels; squares denote predicted classes. Axes
represent the two t-SNE projection dimensions.

4.2 Classification Performance

All models were evaluated on a held-out test set using
FLOAT32 precision to assess their generalization capabilities.
Tables 2 and 3 present the performance of selected RGB and
grayscale models, respectively.

TABLE 2. Test Set Performance of Selected RGB Models (FLOAT32)

Model Accuracy
(%)

F1-
score

ROC
AUC

MobileNetV2 160x160 α = 0.75 95.83 0.9581 0.9694
MobileNetV2 160x160 α = 0.50 91.67 0.9185 0.9930
MobileNetV2 160x160 α = 0.35 91.67 0.9250 0.9977
MobileNetV2 96x96 α = 0.10 87.50 0.8750 0.9807
MobileNetV1 96x96 α = 0.35 83.33 0.8481 0.9778

RGB models generally outperform grayscale models, par-
ticularly in lower-capacity configurations. However, Mo-
bileNetV2 96×96 with α = 0.35 (Grayscale) achieved the same
accuracy and F1-score as the best RGB model, demonstrating
its robustness and potential in constrained environments.



TABLE 3. Test Set Performance of Selected Grayscale Models
(FLOAT32)

Model Accuracy
(%)

F1-
score

ROC
AUC

MobileNetV2 96×96 α = 0.35 (Gray) 95.83 0.9581 0.9906
MobileNetV1 96×96 α = 0.25 (Gray) 91.67 0.9155 0.9634
MobileNetV2 96×96 α = 0.10 (Gray) 83.33 0.8328 0.9513
MobileNetV2 96×96 α = 0.05 (Gray) 83.33 0.8447 0.9444
MobileNetV1 96×96 α = 0.20 (Gray) 79.17 0.7873 0.9446

4.3 Resource Utilization

Resource consumption is crucial for edge applications. Ta-
ble 4 lists inference time, RAM, and Flash usage for all mod-
els. The most accurate RGB model (V2-160-0.75) is compu-
tationally heavy, requiring over 5 MB of Flash and taking 36
seconds per inference—rendering it impractical for real-time
edge deployment. In contrast, MobileNetV2 96×96 α = 0.35
(Grayscale) achieves equivalent accuracy with less than 1 sec-
ond inference time and memory usage under 600 KB, making
it an optimal trade-off. Ultra-lightweight models such as Mo-
bileNetV2 96×96 α = 0.05 (Gray) offer sub-second inference
and minimal memory usage, suitable for latency-sensitive ap-
plications with relaxed accuracy requirements.

TABLE 4. Inference Efficiency and Memory Footprint of Selected Mod-
els

Model Input Inference
Time
(ms)

Peak
RAM
(KB)

Flash
(KB)

MobileNetV2 160×160
α = 0.75

RGB 36353 860.8 5300.0

MobileNetV2 160×160
α = 0.50

RGB 19295 501.7 2800.0

MobileNetV2 160×160
α = 0.35

RGB 6751 441.6 1700.0

MobileNetV1 96×96
α = 0.35

RGB 1798 232.9 587.4

MobileNetV2 96×96
α = 0.10

RGB 1001 169.2 224.9

MobileNetV2 96×96
α = 0.35

Gray 933 214.6 587.1

MobileNetV1 96×96
α = 0.25

Gray 8078 202.3 872.1

MobileNetV2 96×96
α = 0.10

Gray 3414 106.9 192.4

MobileNetV2 96×96
α = 0.05

Gray 828 159.2 174.8

MobileNetV1 96×96
α = 0.20

Gray 6372 164.4 580.5

4.4 Learning Curve Analysis

To better understand model convergence and learning dy-
namics, training and validation loss/accuracy curves were ana-
lyzed for the best-performing models in RGB and grayscale set-
tings. Figures 3 and 4 show the respective learning curves.The
RGB model, MobileNetV2 160×160 α = 0.75, achieves near-
perfect training accuracy within the first 10 epochs and main-
tains stable validation accuracy around 95%. Both training
and validation losses converge quickly and remain low, indicat-
ing strong generalization without overfitting. This model ex-
hibits the highest overall performance but requires substantial
memory and inference time. The grayscale counterpart, Mo-
bileNetV2 96×96 α = 0.35, demonstrates slower but steady
learning. Despite limited input modality, it eventually reaches
the same accuracy (95.8%) as the RGB model, with slightly
higher validation loss and a more gradual convergence. Its
training curve remains stable with minimal overfitting, sug-
gesting that spatial and textural features alone can drive re-
liable classification. These learning dynamics confirm that
MobileNetV2 96×96 α = 0.35 (Grayscale) is the most effi-
cient model in terms of resource-performance trade-off, while
MobileNetV2 160×160 α = 0.75 (RGB) remains the most
accurate, though less practical for edge deployment. While
RGB inputs generally enhance accuracy due to richer infor-
mation, grayscale models—particularly MobileNetV2 α =
0.35—achieve comparable performance with significantly re-
duced resource usage, making them suitable for low-bandwidth
and embedded scenarios.

FIGURE 3. Training and validation curves of MobileNetV2 160×160
α = 0.75 (RGB).

5 Discussion and Limitations

Our findings highlight that model architecture, width multi-
plier (α), and input modality jointly influence both accuracy
and deployment efficiency. Across all tested configurations,



FIGURE 4. Training and validation curves of MobileNetV2 96×96 α =
0.35 (Grayscale).

MobileNetV2 consistently outperformed MobileNetV1 due to
its depthwise separable convolutions and optimized residual
connections. Although RGB inputs deliver richer informa-
tion and accelerate convergence, grayscale inputs demonstrate
strong generalization with drastically reduced memory and la-
tency costs.

Remarkably, MobileNetV2 96×96 (α = 0.35, Grayscale)
achieves comparable test accuracy and F1-score to the RGB-
based MobileNetV2 160×160 (α = 0.75), while consuming
over 90% less memory and inference time. This suggests that
grayscale-optimized models are highly suitable for real-time
ecological monitoring on embedded edge devices.

However, training dynamics differ: RGB models con-
verge more rapidly and stably, whereas grayscale models
exhibit a wider training–validation gap and slower conver-
gence—suggesting a higher overfitting risk during early train-
ing due to lower input entropy. Nonetheless, the grayscale
model’s final performance remains robust.

t-SNE visualizations further validate the model’s ability to
distinguish between succession stages [19], though perfor-
mance variability was observed in samples captured under non-
uniform lighting (e.g., late afternoon), potentially introducing
noise [20]. Standardizing image acquisition—especially cap-
ture time—could improve data consistency in future work.

Succession class definitions were tailored to Kerangas con-
ditions: No Recovery (bare or exposed post-disturbance soil),
Mid (intermediate regrowth dominated by Acacia mangium),
and Late (dense mature vegetation including Cratoxylum ar-
borescens). These were assigned pragmatically rather than
rigid ecological succession stages. Field data were collected
in the 2024 dry season without destructive sampling.

EfficientNet variants were initially considered, but excluded
due to structural complexity and suboptimal performance in
early tests. The final focus on MobileNet aligns with real-world
deployment practices for TinyML and edge AI. All configura-

tions were logged for reproducibility, though only representa-
tive results are reported; non-converging or suboptimal models
are omitted without affecting the study’s integrity.

6 Conclusion

This study demonstrates that lightweight
CNNs—particularly MobileNetV2 variants—are effective
for Kerangas landscape classification in resource-constrained
settings. Through comparative evaluation of twelve config-
urations under RGB and grayscale modalities, we identified
MobileNetV2 96×96 with α = 0.35 (Grayscale) as the optimal
trade-off model, achieving 95.8% accuracy with peak RAM
usage under 215 KB and inference time below 1 second.

The model’s generalization ability, along with its minimal
memory footprint, positions it as a practical solution for real-
time ecological monitoring on embedded edge devices. These
findings support the adoption of grayscale-optimized deep
learning models in domains where computational resources,
energy efficiency, and latency are critical. Future work may ex-
plore domain adaptation, temporal ensembling, or lightweight
augmentation pipelines to enhance robustness under dynamic
field conditions.
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