
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Smart Surveillance for Swiftlet Farming: IoT-Driven 

Real-Time Pest Detection with YOLOv10  

 

Depi Ginting  
Department of Electrical and Computer 

Engineering 
Universitas Syiah Kuala 
Banda Aceh, Indonesia 
depi23@mhs.usk.ac.id  

Kurnianingsih 
Department of Electrical and Computer 

Engineering 
Politeknik Negeri Semarang 

Semarang, Indonesia 
kurnianingsih@polines.ac.id 

Khairun Saddami* 
Department of Electrical and Computer 

Engineering 
Universitas Syiah Kuala 
Banda Aceh, Indonesia 

khairun.saddami@usk.ac.id 

Sunu Wibirama 
Department of Electrical and 

Information Engineering, 
 Faculty of Engineering, Universitas 

Gadjah Mada, Indonesia 
sunu@ugm.ac.id 

Ramzi Adriman  
Department of Electrical and Computer 

Engineering 
Universitas Syiah Kuala 
Banda Aceh, Indonesia 

ramzi.adriman@usk.ac.id 

 

  

Abstract—Pest disturbances in swiftlet houses reduce edible 
bird's nest (EBN) production, a valuable commodity in 
Southeast Asia. Manual pest monitoring is often inefficient and 
disruptive to the sensitive environments of birds. However, to 
the best of our knowledge, no study has incorporated computer 
vision technology and the IoT for smart surveillance in swiftlet 
farming. To address this gap, we propose a YOLOv10-based 
detection system to identify small pests in real time under low-
light conditions. The proposed system features a Python-based 
UI, a Region of Interest (ROI) function to improve detection 
focus, and IoT integration via a Telegram Bot that sends image-
based alerts upon detection. The infrared CCTV cameras 
captured 2,011 images, which were augmented through rotation, 
resulting in 3,992 images. Six YOLOv10 model variants (n, s, m, 
b, l, and x) were evaluated. Based on our experimental results, 
the 'b' variant exhibited the best performance, with an mAP50 
of 0.9936 and the lowest latency. Evaluation using a 50-minute 
video demonstrated accurate and rapid pest identification with 
cockroaches as the main pests. The experimental study showed 
the effectiveness of the system in monitoring swiftlet farming 
while reducing environmental disturbance to birds. 

Keywords: EBN, Pest detection, Swiftlet House, YOLOv10, 
TelegramBot 

I. INTRODUCTION 
Edible Bird's Nest (EBN), also known as swiftlet nest, is a 

high-value food product in Southeast Asia [1], [2]. EBN is 
associated with various health benefits, including anti-aging, 
bone-strengthening, and neuroprotective properties [3]. 
Swiftlets make their nests using saliva [4]. They breed in 
buildings called swiftlet houses, which are made to resemble 
their natural homes, such as caves [5]. Optimal conditions 
within these swiftlet houses include a temperature range of 

26–35°C, humidity levels of 80–90%, low air velocity, and 
lighting below 5 lux [6]. Initially, swiftlet houses were 
constructed primarily in coastal areas. However, they have 
been increasingly established in residential zones because of 
the growing swiftlet population [7]. 

One of the primary factors contributing to decreased 
swiftlet nest production is pest disturbance, which include rats, 
insects, reptiles, and owls [8], [9], [10]. Automatic doors have 
been successfully implemented to prevent owls from entering, 
thereby eliminating the need for human intervention [11]. 
Nevertheless, pest monitoring and nest damage inspection are 
still conducted manually by swiftlet house managers [10]. 
This presents a challenge because swiftlets are particularly 
sensitive to human presence and environmental disturbances 
[12]. Consequently, the frequency of human entry into swiftlet 
houses must be minimized to avoid disrupting the nesting 
process [7]. Consequently, pests frequently go unnoticed 
between inspection periods, resulting in decreased nest 
productivity [10].  

Implementing infrared CCTV cameras has proven to be an 
effective approach to this problem because they are capable of 
generating grayscale images even in low-light environments 
within swiftlet houses [6], [13]. Furthermore, Internet of 
Things (IoT)-based systems are increasingly being 
implemented to monitor environmental conditions, such as 
temperature, humidity, light, and sound. These approaches 
eliminate the need for direct human presence within a swiftlet 
house [14], [15]. In conjunction with these advancements, 
developments in computer vision technology have facilitated 
real-time object detection using algorithms such as YOLO 
[16]. 
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Previous studies have demonstrated that YOLOv3 can 
detect soybean pests with an accuracy of up to 72.92% [16]. 
YOLOv7 can be integrated with Telegram-based applications 
for notifications and has shown effectiveness in detecting 
ships with an accuracy of 94% [17]. YOLOv7 has also 
exhibited high reliability in detecting objects in infrared 
(grayscale) images, achieving a mean average precision (mAP) 
of 95% while supporting real-time performance [18]. 
YOLOv10, a more recent iteration of the YOLO algorithm, 
introduces enhancements in efficiency and accuracy without 
requiring the Non-Maximum Suppression (NMS) process, 
utilizing a dual-label assignment strategy that reduces 
computational redundancy while maintaining high accuracy 
[19]. This model is lightweight and faster than its predecessors, 
YOLOv9 and RT-DETR, and excels in detecting small and 
complex objects [20], [21], [22]. 

YOLOv10's capability to detect small objects, coupled 
with its high computational efficiency and adaptability to low-
light conditions, makes it an ideal solution for pest detection 
in swiftlet houses. This system can be integrated with Internet 
of Things (IoT) technology and a Telegram bot, enabling real-
time notifications to swiftlet house owners and facilitating 
prompt decision-making. However, no study has incorporated 
computer vision technology and the IoT for smart surveillance 
in swiflet farming.  

To address this research gap, we propose a smart pest 
detection system utilizing YOLOv10, the IoT, and a Telegram 
bot. The proposed system aims to deliver early warnings and 
support effective pest management without manual 
intervention. The system was tested using primary data 
obtained from the swift houses. The following sections detail 
the methodology, experimental setup, and evaluation of the 
proposed system. 

II. MATERIALS AND METHOD 
This study was conducted to develop an automated pest 

detection system by integrating the YOLOv10 with Internet of 
Things (IoT) technology through a Telegram-based 
notification bot. The research took place at a swiftlet house, 
with a specific focus on detecting cockroaches as the primary 
pest. The development process involved a systematic 
workflow comprising hardware and software selection, image 
data acquisition and preprocessing, model training and 
optimization, system integration, and performance evaluation 
under real-world conditions. 

A. Tools 
The hardware used in this study comprised an ROG 

Zephyrus G15 laptop, which was equipped with an AMD 
Ryzen 9 5900HS processor, 16 GB of RAM, and an NVIDIA 
RTX 3050 4 GB graphics card. Additionally, a Hikvision 
2CE16KOT IR CCTV camera with a 5 MP resolution, a 4-
channel Turbo HD DVR, an EasyCap USB 2.0 device for 
video signal conversion, and a BNC-to-RCA converter were 
employed. The primary software components included Python 
programming language, Roboflow for dataset management 
and annotation, and Telegram Bot for automated notifications. 
Model training was conducted using Google Colab Pro, 
employing a g2-standard-16 virtual machine configuration 
that featured 16 vCPUs, 64 GB of RAM, and an NVIDIA L4 
GPU with 24 GB of VRAM. The trained model was 
automatically saved to Google Drive. 

B. Dataset  
The dataset processing (Fig. 1) began with the 

identification of cockroaches as the primary target pest using 
infrared (IR) CCTV footage installed within the swiftlet 
houses. The recorded video was subsequently extracted into 
image frames using video processing software. These 
extracted images underwent preprocessing and augmentation 
stages to enhance data variability. Each original image 
underwent rotation augmentation at angles of +15°, -15°, +90°, 
and -90°, resulting in four additional images per original 
image. This process expanded our dataset from 2,011 original 
images to a total of 3,992 images. Some images were not 
augmented due to quality considerations. 

TABLE I.  HYPERPARAMETERS CONFIGURATION FOR YOLOV10 

Hyper-parameter Value 

Epochs 200 
Optimizer SGD 
Batch size 16 
Image Size 640x640 
Momentum 0.937 
Learning rate 10-2 
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Fig. 1. Dataset processing workflow. 

The annotation process involved marking the presence of 
pest objects with bounding boxes on the Roboflow platform. 
All images were then resized to a standard resolution of 
640×640 pixels and saved in a format compatible with the 
YOLO architecture [23]. To ensure a comprehensive and 
unbiased evaluation of the model's performance, the dataset 
was divided into three segments: 80% for training, 10% for 
validation, and 10% for testing. 

C. Model Training and Validation 
The YOLOv10 model was trained using pretrained 

weights from six model variants: Nano (n), Small (s), Medium 
(m), Baseline (b), Large (l), and Extra Large (x). Each variant 
was specifically designed to provide an optimal balance 
between inference speed and detection accuracy, with the 



complexity of the model architecture progressively increasing 
from variant n to x. The training process used images with a 
resolution of 640×640 pixels to align with the input 
architecture of YOLOv10. The training was conducted over 
200 epochs with a batch size of 16. The optimization 
algorithm employed was Stochastic Gradient Descent (SGD), 
characterized by a momentum value of 0.937 and an initial 
learning rate of 0.01, as detailed in Table 1. This training was 
performed using Google Colab Pro to ensure the availability 
of adequate computational resources. Model validation 
occurred concurrently during the training process to facilitate 
real-time performance monitoring.  

Model performance was evaluated using precision, recall, 
F1-score and mean Average Precision (mAP) as shown in Eq. 
(1)-(5). In object detection, precision and recall rely on the 
concepts of true positives (TP), false positives (FP), and false 
negatives (FN). A detection is considered a true positive when 
the model correctly identifies an object. The predicted 
bounding box sufficiently overlaps the ground truth (typically 
measured using an Intersection over Union (IoU) threshold of 
0.5 or higher) and the predicted class label matches the actual 
class. A false positive occurs when the model predicts an 
object that either does not exist, has an incorrect class label, or 
has insufficient overlap with any ground truth object (IoU 
below the threshold). Conversely, a false negative refers to a 

case where an object present in the image is not detected by 
the model at all. Distribution focal loss (dfl) is a specialized 
loss function that helps the model better handle the 
distribution of bounding box coordinates by treating them as 
classification rather than regression problems. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
 (2) 

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1) ⋅  𝑃𝑛

𝑛

 (3) 

where 𝑅𝑛 represents the recall at the nth threshold, 𝑅𝑛−1 is 
the recall at the previous threshold, and 𝑃𝑛 is the precision at 
the nth threshold. 

F1 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

𝑚𝐴𝑃 =
1

𝑛
 ∑ 𝐴𝑃𝑖

𝑛

𝑖=1

 (5) 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝐸𝑛𝑑 −  𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝐵𝑒𝑔𝑖𝑛 (6) 
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Fig. 2. The proposed system in this study. 

D. Development of the proposed system 
The object detection system was developed using a 

Python-based desktop user interface (UI) utilizing the Tkinter 
library. We developed an intuitive graphical interface that 
displayed results of real-time detection as shown in Fig. 2. An 
IR CCTV camera transmitted video signals to the PC via an 
EasyCap device. Upon detecting an object, the system 
captured an image in grayscale format and sent a notification 
to a Telegram bot linked to the smartphone of the swiftlet 
farmer.  

The system included a "Run Startup" button, options for 
selecting different YOLO model variants, and a Region of 
Interest (ROI) feature to limit the detection area. It was 
designed to prevent redundant notifications by tracking the 
number of detected objects, sending alerts only when the 

count increases. The object count was reset every 24 hours or 
upon system restart. 

E. Evaluation of the the proposed system 
The evaluation examined the detection performance of 

each YOLOv10 variant by using an unfamiliar test dataset. 
The metrics assessed included precision, recall, F1-score, and 
mean average precision (mAP), all of which were derived 
from the confusion matrix. A comprehensive system 
evaluation measured detection latency (YOLO latency), 
notification latency (Telegram latency), and the total latency 
from detection to user notification. Testing was conducted 
using a video exceeding 50 minutes in length, simulating real-
world conditions in the swiftlet house. The captured video 
from CCTV footage was not part of the dataset and was 
exclusively used for the real-time performance evaluation of 
the system. The 50-minute test video was recorded under 
actual swiftlet house conditions with varying lighting levels 



(0.5-5 lux) and contained 157 instances of cockroach 
appearances at different locations. The detection results of the 
system were manually verified against a frame-by-frame 
analysis by human experts to confirm the accuracy. Having 
established the experimental framework, we analyzed the 
results of our YOLOv10-based pest detection system. 

III. RESULTS AND DISCUSSION  

A. Dataset 
Infrared CCTV recordings from within the swiftlet house 

confirmed that cockroaches image acquisition was effective 
even under low-light conditions. The camera, placed in key 
areas such as wooden surfaces, walls, and nesting boards, 
successfully captured clear images of cockroaches activities 
using its 24-hour infrared feature. The augmentation process 
doubled the dataset from 2,011 to 3,992 images, with varied 
angles improving the model’s detection capability. 
Annotation results are shown in Fig. 3. The dataset was split 
into 80% training or around of 3,194 images, 10% or 400 
images as validation, and 10% or 400 images as testing, and 
published via Roboflow [24]. 

 

 
Fig. 3. Cockroach dataset used in this study. 

B. Training and validation results 
The YOLOv10 training for cockroach detection within the 

swiftlet house was successfully executed across six model 
variants: n, s, m, b, l, and x. Each variant demonstrated varying 
performance based on the hyperparameter configurations, as 
detailed in Table 1.  

TABLE II.  TRAINING RESULTS OF SIX YOLOV10 VARIANTS 

Model 
Variants 

Training 
Time 

Best Epoch 
(mAP50) 

Model Size 
(MB) 

YOLOv10n 2h 41m 17s 199 5.64 
YOLOv10s 5h 40m 50s 184 16.16 
YOLOv10m 4h 21m 18s 167 32.71 
YOLOv10b 5h 24m 37s 145 40.49 
YOLOv10l 6h 57m 14s 172 50.98 
YOLOv10x 8h 5m 49s 158 62.60 
 
Table 2 provides a summary of the training duration, 

optimal epoch based on the mAP50 value, and model size for 
the six YOLOv10 variants. The YOLOv10-n variant achieved 
the shortest training time of 2 hours and 41 minutes, while the 

x variant exhibited the longest training duration, exceeding 8 
hours. As the complexity of the models increased from variant 
n to x, the file size also significantly escalated from 5.64 MB 
to 62.60 MB. We discovered that the s variant took longer to 
train compared to the m and b variants because the training 
was conducted on a free cloud service platform. The 
computation resources are reduce to lower resource. 

The validation results of the six variants are presented in 
Table 3. All models demonstrated excellent detection 
performance, with mAP50 values exceeding 0.9900. The s 
variant provided the most balanced results, achieving a 
precision of 0.989, a recall of 0.9811, and the highest F1 score 
of 0.9851. Meanwhile, the x variant recorded the highest 
precision at 0.9900, but its recall was relatively lower at 
0.9673, resulting in an F1 score of 0.9785, comparable to that 
of the n variant (0.9784). 

TABLE III.  VALIDATION RESULTS OF SIX YOLOV10 VARIANTS 

Model 
Variants Precision Recall F1 Score mAP50 

YOLOv10n 0.9824 0.9743 0.9784 0.9909 
YOLOv10s 0.989 0.9811 0.9851 0.9932 
YOLOv10m 0.9782 0.9794 0.9788 0.9929 
YOLOv10b 0.9778 0.9869 0.9823 0.9936 
YOLOv10l 0.9863 0.976 0.9811 0.9939 
YOLOv10x 0.99 0.9673 0.9785 0.9937 

 
 The b and l variants also demonstrated competitive 
performance, with F1 scores of 0.9823 and 0.9811, 
respectively, and exceptionally high mAP50 values of 0.9936 
and 0.9939. These results indicate that models with medium 
to high complexity are capable of delivering excellent 
detection accuracy. Based on the results, all YOLOv10 
variants could be effectively utilized for cockroaches 
detection in swiftlet houses. When choosing the most 
appropriate variant, it is important to take into account the 
system's specific needs, especially in terms of the 
computational resources available and the requirement for fast 
inference. 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN SEVERAL MODELS 

Model 
Variants Precision Recall F1 Score mAP50 

YOLOv10-s 0.9890 0.9811 0.9851 0.9932 
YOLOv10-b 0.9778 0.9869 0.9823 0.9936 
YOLOv10-l 0.9863 0.976 0.9811 0.9939 
YOLOv10-x 0.9900 0.9673 0.9785 0.9937 
YOLOv8-m 0.9779 0.9648 0.9713 0.9875 
RT-DETR-l 0.9869 0.9824 0.9846 0.9906 

  

 Table 4 shows the comparison of the best evaluation 
measures of YOLOv10 variants outperform YOLOv8-m and 
RT-DETR-l in mAP50, with YOLOv10-l achieving the 
highest score (0.9939). YOLOv10-x offers the best precision 
(0.9900), while YOLOv10-b provides the most balanced 
performance, combining high recall (0.9869), precision 
(0.9778), and low latency. Although YOLOv10-l and -x are 
slightly more accurate, their computational demands may 
limit real-time deployment. In contrast, YOLOv10-b offers an 
optimal trade-off between accuracy and efficiency, making it 
well-suited for practical, low-latency applications such as 
real-time pest detection in swiftlet houses.  



 
Fig. 4. User interface of the proposed system. 

C. Real-time detection using the proposed system 
Figure 4 illustrates the user interface (UI) of the 

cockroaches detection system based on YOLOv10. Users are 
allowed to select from six model variants, ranging from Nano 
(n) to Extra Large (x), using radio button options. The "Start 
Detection" button initiates the detection process, while the 
"Add to Startup" button configures the application to launch 
automatically upon powering on the computer. For user 
convenience, a note indicates that pressing the 'q' key will exit 
detection mode. 

The ROI feature offers two display modes: ROI OFF and 
ROI ON. In ROI OFF mode, the entire camera view is utilized 
for detection as shown in Fig 5. Furthermore, as shown in Fig. 
6, only a specific highlighted area (displayed in translucent 
purple) is targeted for detection in ROI ON. This mode 
enhances system efficiency by minimizing false detections 
outside critical areas and reducing computational load, as only 
a portion of each frame is processed. This feature is 
particularly advantageous in swiftlet houses, where 
cockroaches activities are concentrated in defined areas. By 
focusing the detection area, the system increases speed while 
mitigating distractions from irrelevant movements. Overall, 
the ROI mode significantly enhances system efficiency and 
supports a more focused and reliable detection process. 

Additionally, the system is integrated with a Telegram bot 
that delivers real-time notifications containing detection 
images, complete with bounding boxes and timestamps (see 
Fig 7). Notifications are triggered only when the number of 
detected cockroaches increases. Furthermore, the system 
automatically resets the detection count every 24 hours or 
following a power outage, ensuring that notifications remain 
pertinent for the swiftlet house owner. 

 
Fig. 5. Region of interest (ROI) mode: OFF. 

 
Fig. 6. Region of interest (ROI) mode: ON. 

 
Fig. 7. Telegram notification based on results of detection. 

TABLE V.  PERFORMANCE EVALUATION OF SYSTEMS’ LATENCY 

Model 
variant 

Total 
Detection 
messages 

Average 
Detection 
Latency 

(ms) 

Average 
Telegram 
Latency 

(ms) 

Average 
Total 

Latency 
(ms) 

Average 
Google 

Ping 
(ms) 

YOLOv10-n 157 29 2241 2283 38 
YOLOv10-s 153 27 2894 2934 84 
YOLOv10-m 151 26 2004 2043 46 
YOLOv10-b 153 26 1799 1838 38 
YOLOv10-l 153 26 1834 1874 39 
YOLOv10-x 150 25 1996 2034 39 
YOLOv8-m 246 58 1741 1815 41 
RT-DETR-l 230 59 1892 1966 40 

 



The latency results in Table 5 represent the average 
detection and notification times for each model variant. 
YOLO-based detection was consistently fast, with processing 
times between 25–29 ms per frame. All variants accurately 
detected cockroaches, with total counts ranging from 150 to 
157. However, Telegram notification latency varied due to 
network conditions, as indicated by ping times to Google. 
YOLOv10-s had the highest notification delay at 2,894 ms, 
while YOLOv10-b performed best with the shortest latency of 
1,838 ms, making it the most suitable for real-time 
deployment. The system uses a state-based mechanism that 
triggers alerts only when cockroach counts increase, avoiding 
redundant messages. A 20-second reset mechanism was used 
during testing, while in real use, the counter resets every 24 
hours or after a power outage. Limitations include the 
system’s focus on a single pest class and sensitivity to network 
conditions. Future work includes multi-pest detection, 
improved robustness, and edge computing integration. 

 

IV. CONCLUSIONS 
This study proposed a novel pest detection system for 

swiftlet houses based on the YOLOv10 models. Evaluation 
results demonstrated exceptional detection performance 
across all models, with mAP50 values exceeding 0.99 and F1 
scores surpassing 0.97. Although more complex models 
required longer training times and had larger file sizes, their 
validation performance remained relatively comparable to that 
of lighter models. The system was tested on  a real-time video 
and efficiently delivered real-time notifications via Telegram, 
with the YOLOv10-b variant achieving the lowest total 
latency. Furthermore, the system was equipped with a Region 
of Interest (ROI) feature to enhance detection efficiency and 
an anti-spam mechanism that sends notifications only when 
the number of detected cockroaches increases. Based on our 
experimental results, the proposed system is a reliable and 
effective for field implementation. 
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