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Abstract:

Vehicle detection systems (VDS) are growing in popularity as
intelligent transportation systems expand rapidly. Autonomous
driving, urban planning, and traffic regulation all depend on
VDS. This paper develops a dependable VDS model, called
SEPE-YOLO (Squeeze-and-Excitation aided and Parzen Esti-
mator optimized YOLO), which can detect various vehicle types
from images taken in different lighting and weather conditions,
including sunny, rainy, daylight, and midnight. In order to
improve the model’s performance, Squeeze-and-Excitation (SE)
blocks are incorporated into the YOLOvV10 architecture. We
have used the Tree-structured Parzen Estimator to fine-tune
the hyperparameters of the SEPE-YOLO model. The pro-
posed model has been evaluated on two public VDS datasets:
JUVDsivl and IRUVD. We have obtained mAP scores of
79.9% and 94.8% on JUVDsivl and IRUVD dataets, respectively.
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1. Introduction

Deploying real-time vehicle monitoring and detection sys-
tems in densely populated environments presents significant
challenges, particularly in distinguishing vehicles in close
proximity. Accurately detecting and tracking vehicles under
such conditions requires advanced computational models capa-
ble of processing complex visual data. Recent advancements

in deep learning, particularly convolutional neural networks
(CNNs), have demonstrated strong performance in a variety
of computer vision tasks, including object and vehicle detec-
tion [1l]. Object detection frameworks are typically catego-
rized into two paradigms: two-stage and single-stage detectors.
Two-stage methods, such as Region-based Convolutional Neu-
ral Networks (R-CNN) [2]], and Fast R-CNN [3]] begin by gen-
erating region proposals, which are subsequently refined and
classified. While these models are known for their high accu-
racy, they often involve greater computational complexity. In
contrast, single-stage detectors such as the Single Shot Multi-
Box Detector (SSD) [4] and various versions of the You Only
Look Once (YOLO) family [3], bypass the region proposal
step and directly regress bounding boxes and class probabil-
ities, thereby offering faster inference with competitive accu-
racy. Recent research has increasingly focused on improving
single-stage detectors for real-time applications. Among these,
the YOLO family has undergone rapid evolution, culminating
in the release of YOLOv10 [6], which has demonstrated sub-
stantial promise in real-time object detection scenarios. De-
spite its early stage of adoption, YOLOv10 offers an effective
balance between detection speed and accuracy, making it a suit-
able candidate for deployment in dynamic traffic environments.
Contributions: Motivated by these developments, we propose
a new model, called SEPE-YOLO (Squeeze-and-Excitation
aided and Parzen Estimator optimized YOLO) for vehicle de-
tection from still images. Here, YOLOvV10’s feature extrac-
tion capability is enhanced by incorporating the Squeeze-and-
Excitation (SE) blocks. Furthermore, a Tree-structured Parzen



Estimator (TPE) is employed for hyperparameter optimization,
enabling systematic exploration of the parameter space to iden-
tify the optimal configuration that maximizes validation accu-
racy. To evaluate the effectiveness of the proposed model, we
conduct experiments on two publicly available datasets: JU-
VDsivl [1]], and IRUVD [7]]. The results demonstrate the ro-
bustness and accuracy of the SEPE-YOLO model in complex,
real-world vehicular environments.

2. Literature Survey

In recent years, several advancements have been made in ob-
ject detection algorithms specifically tailored for vehicle detec-
tion under various constraints and environments. In 2021, S and
Rani [8] introduced LittleYOLO-SPP, a lightweight vehicle de-
tection model based on YOLOvV3-tiny, enhanced with a Spatial
Pyramid Pooling (SPP) layer. Their approach also incorporated
Mean Squared Error (MSE) and Generalized Intersection over
Union (GIoU) loss functions to improve bounding box regres-
sion accuracy.

Du et al. [9] proposed a method leveraging YOLOV4 for de-
tecting heavily occluded vehicles in complex infrared aerial im-
agery. Their contribution includes a secondary transfer learning
step to fine-tune the detection model, resulting in improved de-
tection performance in challenging conditions. Shi et al. [10]
presented a refined version of YOLOv3 by integrating GloU
and focal loss functions, along with label smoothing and a co-
sine decay learning rate scheduler. These enhancements col-
lectively contributed to higher average detection accuracy. Ta-
jar et al. [11] focused on resource-constrained environments
by employing the Tiny-YOLOV3 architecture for real-time ve-
hicle detection and tracking. They reduced the network com-
plexity by decreasing the number of filters and layers, and
omitted batch normalization in scenarios with relatively simple
backgrounds to further optimize inference speed. Amrouche
et al. [12]] introduced a lightweight modification of YOLOv4
based on the YOLO-tiny architecture. Their design utilizes
CSPDarknet53-tiny with three convolutional layers and three
Cross Stage Partial (CSP) blocks, while replacing the Mish ac-
tivation function with LeakyReLU to enhance computational
efficiency.

More recently, Singh et al. [[13] proposed a YOLOv7-based
solution for aerial-view vehicle detection and tracking, tailored
for automated traffic data collection systems. Their frame-
work integrates vehicle detection, classification, and tracking
from UAV imagery to support intelligent transportation mon-
itoring. Yang [14] advanced YOLOvVS5 for small-object vehi-
cle detection by incorporating a dedicated small-target detec-
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FIGURE 1. Architectural overview of YOLOVI10.

tion layer. Additionally, their model employs a Bi-directional
Feature Pyramid Network (BiFPN) for feature fusion and uses
adaptive weighted fusion to effectively integrate multiscale in-
formation, reducing both false positives and missed detections.

3. METHODS AND MATERIALS
3.1. Basics of YOLOvV10

YOLOvV10, developed by researchers at Tsinghua Univer-
sity [6], is a real-time object detection framework that ad-
dresses limitations in post-processing and model design present
in previous YOLO versions. Notably, it eliminates the need
for non-maximum suppression (NMS) by integrating a novel
end-to-end detection head. YOLOV10 achieves state-of-the-art
accuracy-latency trade-offs across multiple model scales while
significantly reducing computational overhead. Its architecture
retains the strengths of prior YOLO models, incorporating an
enhanced Cross Stage Partial Network (CSPNet) in the back-
bone to improve gradient flow and reduce redundancy. The
neck module fuses multiscale features and transmits them to
the detection head. An architectural overview is illustrated in

Figure[T]



3.2. Squeeze-and-Excitation Blocks

Hu et al. [15] introduced the Squeeze-and-Excitation Net-
work (SENet), a channel attention mechanism designed to
model interdependencies between feature channels. SENet
enhances feature representations by adaptively recalibrat-
ing channel-wise responses, emphasizing informative features
while suppressing less relevant ones. The mechanism consists
of two key stages: squeeze and excitation. In the squeeze
phase, global average pooling (GAP) is applied to aggregate
global spatial information into a compact channel descriptor.
The excitation phase then uses two fully connected layers to
learn non-linear interactions between channels and generate at-
tention weights. These weights are used to rescale the original
feature maps, selectively enhancing or diminishing channel re-
sponses. An architectural illustration of the SE block is shown
in Figure 2]

FIGURE 2. Architectural overview of the Squeeze-and-Excitation block

3.3. Hyperparameter Tuning using Parzen Optimizer

The Tree-structured Parzen Estimator (TPE), proposed by
Akiba et al. [16], formulates hyperparameter optimization as
a sequential model-based optimization problem, where the ob-
jective is to minimize or maximize a black-box function that
evaluates model performance based on a given set of hyperpa-
rameters. TPE distinguishes itself by modeling the objective
function using non-parametric density estimators, which sepa-
rately estimate the distributions of favorable and unfavorable
hyperparameter configurations. New samples are drawn by
maximizing the expected improvement, effectively biasing the
search toward regions of the space that are more likely to yield
better performance. A key strength of TPE lies in its define-
by-run paradigm, wherein the hyperparameter search space is
constructed dynamically during the execution of the objective
function. This allows for flexible and conditional configuration
of parameters, such as varying the number of network layers or
hidden units depending on other hyperparameters. In this for-
mulation, each optimization process is referred to as a study,
consisting of multiple trials, with each trial representing a sin-
gle evaluation of the objective function. The search space is
progressively expanded through interaction between the objec-
tive function and a trial object, enabling dynamic and expres-

sive hyperparameter definitions beyond the limitations of static
search strategies.

3.4. Modified YOLO

To enhance feature refinement and improve the represen-
tational capacity of the network, we incorporate a Squeeze-
and-Excitation (SE) block into the cf2 feature map. As an
intermediate-level representation, cf2 is critical for capturing
both semantic and spatial information necessary for robust
multi-scale object detection. The SE block performs global av-
erage pooling to generate compact channel-wise descriptors,
followed by a lightweight gating mechanism that adaptively
recalibrates the channel responses. This operation selectively
emphasizes informative features while suppressing less rele-
vant ones, thereby strengthening the discriminative power of
cf2. In addition, we employ Parzen Estimator-based optimiza-
tion to automatically tune key training hyperparameters such
as learning rate, batch size, and weight decay. This data-driven
approach to hyperparameter search not only accelerates con-
vergence but also improves generalization by identifying well-
balanced configurations that might be suboptimal under manual
tuning. Together, the integration of SE-based refinement and
automated hyperparameter optimization contributes to more
accurate and stable object detection performance across var-
ied scenarios. Key parameters like learning rate, batch size,
optimizer type SGD, weight decay, data augmentation settings
(mixup, mosaic), anchor sizes, and intersection-over-union
(IoU) thresholds are considered ib the optimization process.
The optimizer effectively explores the search space over 50 tri-
als using the TPE sampler, to maximize the mAP@0.5:0.95
on the validation dataset. With the addition of the SE atten-
tion module and hyperparameter tuning based on the TPE, the
modified YOLOvV10 framework outperforms the vanilla archi-
tecture in terms of performance. Better feature representation
and automated model tuning are made possible by these im-
provements, which increases the detector’s resilience in a vari-
ety of difficult image types. The architectural overview of the
modified C2f block is shown in Figure [2] To the output of ev-
ery C2f convolutional block in the YOLO architecture, we have
added an SE block, which improves the attention mechanism
of the model. The architectural overview of the SEPE-YOLO
model is shown in Figure ]
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FIGURE 4. Architectural overview of the SEPE-YOLO model proposed
here

4. Results and Discussion

4.1. Datasets

For training and testing of the proposed model, we have used
two benchmarked datasets, namely JUVDsiV1E| and IRUV]jﬂ
The JUVDsiv1 dataset depicts a typical Indian road scenario
developed by Bhattacharyya et al. [1l]. The images were taken
under various circumstances and at various times of the day.
The dataset has nine distinct vehicle classes: cars, buses, mo-
torcycles, cycles, trucks, auto-rickshaws, rickshaws, vans, and
mini trucks. The training set consists of 651 images in over-
cast weather and 872 images in sunny weather, and 565 im-
ages taken under clear skies at night. The IRUVD dataset, cre-
ated by Ali et al. [7], contains 13 Indian vehicle classes, in-
cluding truck, motor-rickshaw, tempo, automobile, taxi, toto,
cycle-rickshaw, bus, auto-rickshaw, jeep, and van along with
pedestrians. There are 4000 images and 14,343 bounding box
annotations in this collection.

4.2. Experimental Setup and Hyperparameters

The proposed model was implemented on an Intel Core i5
machine equipped with an NVIDIA GEFORCE RTX graphics
card, 16GB of RAM, and 8GB of GPU. The proposed model
was trained with a learning rate of 0.001 for 200 epochs.

4.3 Evaluation Metrics

We have used some standard evaluation metrics: F1 score
[17]], Precision (Pre) [17], Recall (Rec) [17], and Mean Average
Precision (mAP) [[18]]. By comparing actual and predicted out-
comes, these metrics are calculated by analyzing the relation-
ship between the True Positive (instances that are positive by
both ground truth and the prediction), True Negative (instances
that are negative by both ground truth and the prediction), False
Positive (negative instances that are misclassified as positive),
and False Negative (positive instances that are misclassified as
negative) values.

. TP
Precision(%) = TP+ P~ 100 )
TP
Recall(%) = m x 100 (2)

'https://github.com/JUVDsi/JUVD-Still-Image-database.

git
“https://github.com/IRUVD/IRUVD.git
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(Precision X Recall)

Fl-sc =2
score(%) x (Precision + Recall) 8

100  (3)

Here, TP, TN, FP and FN signify the true positives, true neg-
atives, false positives and false negatives, respectively.

4.4. Results

The outcomes of the SEPE-OLO model with SE attention
modules and TPE-based hyperparameter optimization on two
vehicle detection datasets are shown in Figure[6] We obtained
an mAP score of 79.9% at mAP50 and 57.9% at mAP50-
95 using the JUVDsivl dataset. We obtained a 94.8% mAP
score at mAP50 and an 85.2% mAP score at mAP50-95 using
the IRUVD dataset. The precision, recall, and F1 confidence
curves are shown inFigure[7} Figure [§]after our model has been
run on the JUVDsivl and IRUVD datasets.

Output images obtained on JUVDsivl and IRUVD datasets
by applying the SEPE-YOLO model are shown in Figure[5] Ta-
ble |l| presents comparative results of the base YOLO model
with proposed results performed on JUVDsivl and IRUVD
datasets. From Table [I] we find that our proposed model has
achieved better mAP score, precision, and recall scores than
base models.

TABLE 1. Performance comparison of our proposed model with base
model on two datasets. All scores are in %.

Dataset | Method | mAP50 | Pre | Rec | mAP95

| YOLOvIO | 753 |552]794| 713
JUVDSWL | “proposed | 79.9 | 767 | 721 | 57.9
| YOLOVIO | 946 | 855|934 | 924
IRUVD | ‘proposed | 94.8 | 93.5 | 838 | 852

4.5. Comparative Study

The comparative analysis of the JUVDsivl and IRUVD
datasets is summarized in Table. @ On the test set, the pro-
posed model achieves the mAP score of 79.9%, whereas Bhat-
tacharya et al. [[1] achieve a 74.5% mAP score using a weighted
box fusion approach on the JUVDsivl dataset. However, em-
ploying a YOLOVS as the baseline model, [3] achieves a lower
mAP score of 94.6% compared to our approach. Our method

achieves an impressive test mAP score of 94.8% on the IRUVD
dataset, where Ali et al. [7] achieve a lower mAP score than our
proposed model.

TABLE 2. Comparative results on both datasets

Dataset: JUVDsivl

Work Ref. Method mAP(%)
Bhattacharya et al. [1], 2021 Weighted Box Fusion 74.5
Jocher et al. [19], 2020 YOLOV5 78.6
Lou et al. [20], 2023 YOLOV8 76.8
Proposed, 2025 SEPE-YOLO 79.9

Dataset: IRUVD

Method mAP(%)
Ali et al.[7], 2023 YOLOv5+scaled YOLOv4 94.7
Maity et al.[5], 2023 YOLOvS 94.6
Jocher et al.[[19], 2020 YOLOV5 92.2
Ali et al.[7], 2023 YOLOv4+scaled YOLOv4 94.3
Proposed, 2025 SEPE-YOLO 94.8

4.6. Conclusion

Vehicle detection systems are essential for enhancing
transportation safety and efficiency by enabling real-time
vehicle detection, reducing traffic congestion, and managing
autonomous vehicles. In this study, we proposed SEPE-
YOLO, a vehicle detection model that integrates SE blocks in
the YOLOV10 model, aided with hyperparameter tuning by the
TPE optimizer. By incorporating SE blocks into the YOLOv10
architecture, we enhanced the model’s attention mechanism.
We evaluated the SEPE-YOLO on two vehicle detection
datasets, namely JUVDsivl and IRUVD, demonstrating its
effectiveness across diverse weather conditions. While the
performance is promising, further exploration of advanced
attention modules could lead to even better results. To further
validate the robustness and generalizability of our approach,
future work will involve testing SEPE-YOLO on additional
datasets, such as surveillance and other object detection
benchmarks. These evaluations will help refine the model and
ensure its applicability in a broad range of real-world scenarios.
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