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Abstract— Elevator safety critically depends on the condition of 
steel wire ropes, whose failure can lead to catastrophic incidents. 
Conventional inspection methods rely heavily on manual visual 
checks conducted infrequently, making early defect detection 
challenging. This study proposes an automated defect detection 
system utilizing deep learning and transfer learning to enhance 
the reliability and efficiency of steel rope inspections. A dataset 
comprising 2,000 images—categorized into four classes: normal, 
broken, worn/fatigued, and rusted—was collected from multiple 
elevator installations and annotated by industry experts. The 
Inception V3 Convolutional Neural Network (CNN) model, 
known for its high accuracy in image recognition, was employed 
using transfer learning. Image preprocessing included resizing, 
background standardization, and data augmentation to improve 
model generalization. Several configurations of hyperparameters 
were tested, including variations in learning rates, batch sizes, and 
training epochs. The optimal model was achieved using a learning 
rate of 0.00001, a batch size of 32, and 50 epochs, resulting in a 
classification accuracy of 90%. Evaluation metrics, including 
precision, recall, and F1 score, confirm the model’s robustness 

and generalization capability. The system effectively 
distinguishes between different types of surface defects, 
providing actionable insights for predictive maintenance. By 
reducing reliance on manual inspections and offering early 
detection, this approach significantly contributes to elevator 
safety. This research demonstrates the potential of integrating 
deep learning and transfer learning in industrial safety 
applications. Future improvements could include real-time 
implementation, integration with IoT-enabled monitoring 
systems, and expanded datasets to further enhance accuracy and 
reliability in diverse operational conditions. 
Keywords— Steel wire rope defects, elevator safety, transfer 
learning, image recognition, deep learning. 

I. INTRODUCTION  
Steel wire ropes are often used in elevators to transfer 

people in high-rise structures. The steel rope plays a crucial 

function since it is the primary determinant of passenger 
safety while operating the elevator. The elevator accidents 
were all attributed to fractured steel cables (wire ropes) [1]. 
On March 2, 2013, there was an instance in Hong Kong 
where 4 steel wires holding the elevator broke 
simultaneously [2]. The steel cable on the elevator is of 
utmost importance, as any damage to it might have 
devastating consequences. If the cable fails, the elevator 
will plummet uncontrollably, resulting in several fatalities.  

The inspection mainly relies on visual observation by 
technicians, conducted only once or twice annually. This 
results in suboptimal monitoring of the condition and 
safety of the steel rope. A method is required to do the 
inspection more efficiently. Numerous studies have been 
undertaken to identify a way to inspect this steel rope, 
including magnetic technology, specifically magnetic flux 
technology, which can assess the exterior and interior of 
the steel rope[1]. Moreover, the technology employing 
electromagnetic waves can ascertain the decrease in the 
diameter of a steel cable[2]. Subsequent investigations 
employ image processing techniques capable of 
quantifying the diameter and corrosion on the steel 
cable[3]. Digital image processing, utilizing a mix of 
magnetic flux and infrared imagery, serves as a technique 
for identifying damage to steel cables[4]. Other 
investigations have been used ultrasonic waves to identify 
degradation in steel ropes, particularly under settings 
involving lengthy steel ropes [5], [6]. 

Based on the research carried out then, all the studies 
described concentrate on identifying damage to 
conditioned steel ropes. Additionally, it needs to be more 
accurate because the infrared approach relies on a limited 
amount of data and cannot detect at fast speeds. It requires 
many sensors due to its reliance on electromagnetic and 
ultrasonic technology [7]. Computer vision is extensively 
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utilized through numerous approaches and algorithms, 
including Support Vector Data Description (SVDD), which 
evaluates 200 photos of steel ropes and achieves an 
accuracy of up to 93%[8]. Image processing via a camera 
employs the autocorrelation approach, which transforms 
images collected by the camera into image signals, 
enabling the detection of damage in the steel rope through 
signal discrepancies[9]. While numerous methods, as 
mentioned earlier, can identify damage to steel ropes, a 
technique must be necessary to forecast and quantify 
overall damage (wire breaking) and assess corrosion (both 
internal and exterior), wear, and fatigue. Machine learning 
techniques, including deep learning, have been extensively 
researched to enhance performance[10], [11]. Zhou et al. 
achieved a diagnosis accuracy of 93.3% utilizing the Local 
Binary Pattern Support Vector Machine (LBPSVM) 
technique through several machine learning 
algorithms[12]. Xinyuan et al. used the convolutional 
neural network (CNN) method, which produced an F1 
value four times higher than the conventional machine 
learning method with a shorter processing time[13]. Zhou 
et al. employed deep learning utilizing the VPT framework, 
incorporating an image preprocessing approach and a Deep 
Convolutional Neural Network, achieving a detection 
accuracy of up to 95.55%[14]. Research by Afroze et al. 
employed the DCNN Inception V3 model to identify 
Glaucoma with a dataset of 5460 pictures, yielding 
predictions that surpassed those of the DenseNet and 
ResNet50 models [15]. 

The project will employ deep learning techniques with 
image processing techniques and DCNN Inception V3 
models to predict and identify deterioration on elevator 
steel ropes, including wear and fatigue, corrosion, and 
breaking. The rationale for employing the Inception model 
is deemed more suitable given the number of images in the 
steel rope damage dataset. This study employs the 
TensorFlow Framework with the Python programming 
language[16]. This work aims to develop a high-
performance model with elevated predictive accuracy and 
offer prescriptive recommendations for repairs or actions 
to undertake [17]. This study aims to develop a damage 
detection model for elevator steel ropes utilizing image 
processing and deep learning. It involves acquiring 
adequate and pertinent images of steel ropes, processing 
images depicting various types of damage into datasets, 
generating a deep learning model that yields a system with 
high predictive accuracy and performance, and creating an 
application capable of detecting steel rope damage based 
on the developed model. 

II. MATERIALS AND METHODS 
 This paper presents a novel method for detecting 

surface defects in steel wire ropes on elevators through 
transfer learning. The model is proposed for early 
detection. This process is fully depicted in Fig. 1.  

A. Elevator & Steel Rope 
Elevators are vertical conveyance systems that may 

move people or cargo up and down stories in multi-story 
buildings. Electric motors typically operate elevators that 
pull or push the steel cable and its counterweight. The 
cage/car serves as the transport mechanism for people or 
products. Counterweights, including pulleys, are required 
to stabilize the cage burden. A traction or traction wheel 

moves the steel rope to elevate or pushes the cage within 
the engine room. The elevator mechanism consists of a 
cage that ascends and descends, driven by a motor via ropes. 
These ropes are generally composed of steel, which is why 
they are referred to as Steel Wire Ropes (SWR)[9]. Steel 
wire ropes are extensively utilized for hoisting substantial 
weights. Diverse categories of steel cables are engineered 
and evaluated for different applications to elevate tensile 
loads[18]. Steel cables are essential components frequently 
utilized in the elevator sector. Steel ropes are composed of 
many steel wires or fibers. The material's axial strength is 
enhanced by twisting multiple fibers into a plate, weaving 
them into a single unit (strand), and then twisting them on 
the central core (core). Steel ropes often have many 
structures and may effectively raise tensile loads without 
failure [19]. The steel ropes utilized for elevators typically 
consist of 6 or 8 strands. The structure of the elevator steel 
cable condition was shown in fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. The Entire of The Procedure on Detection of Steel Wire 

Rope Surface Defects on Elevators Dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Appearance of Elevator Steel Cable Condition 

Steel cables in elevators are prone to various defects, 
including fractures, wear, and corrosion, which can lead to 
fatalities. ISO 9344 mandates replacing cables with at least 
four damaged wires, while ISO 4309 highlights how wear 
and corrosion weaken their strength and resistance. 
Corrosion, in particular, can reduce a steel cable's strength 
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by over 30%, with some cases reaching up to 50%.[20], 
[21].  

B. Dataset 
The dataset was generated by collecting images of 

various conditions of steel ropes, including normal, worn, 
rust, and broken. A total of 3,000 images were gathered 
from six elevators in two different buildings using a 12-
megapixel camera. Datasets are obtained from globally 
recognized elevator firms. Moreover, labeling is conducted 
by specialists from a globally recognized elevator firm. 
Consequently, based on the consultation results, a decision 
might be made on four classifications. 

The images were edited to meet the specifications 
required for the deep learning model, including cropping, 
resizing to 500x500 pixels, and placing the vertical steel 
ropes against a white background. After editing, 2,000 
images were produced and divided into training and test 
sets with a 9:1 ratio, resulting in 1,800 training images and 
200 test images. These images were further classified into 
four categories: broken, normal, rusty, and worn. 

C. Convolutional Neural Network 
In Convolutional Neural Networks (CNNs), 

convolution refers to a fundamental mathematical 
operation integral to the network's functioning[22], [23], 
[24]. CNN architecture typically consists of multiple 
convolutional layers, followed by a subsampling (pooling) 
layer, with a fully connected (FC) layer forming the final 
component. The input for each layer is represented in three 
dimensions: height, width, and depth, denoted as m × m × 
r, where m represents the height and width, and r represents 
the number of channels, such as 3 for an RGB image. Each 
convolutional layer employs a set of filters or kernels, 
denoted by k, which are also three-dimensional (n × n × q). 
Here, n is less than m, and q is less than or equal to r, 
ensuring compatibility with the input dimensions[25].  

The convolutional neural network operation is shown 
in Fig. 3, whereas the kernel has bias parameters bk and 
weight Wk to produce k feature maps hk with their 
respective sizes (m-n -1) and convolved with the input. In 
the convolution layer, the multiplication between the input 
and the weight is calculated as in equation (1). 

ℎ𝑘 = 𝑓(𝑊𝑘 ∗ 𝑥 + 𝑏𝑘) (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3. Convolution operation for a 4x4 grayscale input with a 
2x2 kernel 

D. Transfer Learning 
Transfer learning is a deep learning methodology that 

leverages knowledge from pre-trained models on extensive 
tasks to improve performance on analogous but smaller 
tasks[26], [27]. This entails utilizing models such as VGG, 
ResNet, or Inception. During this procedure, the initial 
layers of the pretrained model, which acquire fundamental 
properties such as edges or textures, are preserved. In 
contrast, the subsequent layers are adjusted to align with 
the new goal. This methodology markedly decreases 
training duration and enhances model efficacy, particularly 
when the target dataset is constrained. Transfer learning is 
especially advantageous in domains such as image 
recognition and natural language processing, where data 
scarcity frequently poses a difficulty. Transfer learning 
enhances the generalization capacity of deep learning 
models by leveraging knowledge from pre-trained models, 
facilitating competitive outcomes with reduced resources 
and diminished training duration. This technique is 
essential for improving efficiency in multiple 
applications[27]. 

III. RESULTS AND DISCUSSIONS 
This preprocessing includes several techniques for 

image preparation. Several steps are performed in image 
processing, most notably background removal and crop 
and resizing processes. Specifically, by separating 9:1, 
2000 pictures were acquired and split into test and training 
images. So that 200 test photos and 1800 training images 
may be acquired. Four classes comprise training and test 
images: broken, normal, rust, and worn. The entire process 
was depicted in Fig.1. In this study, a deep learning model 
using transfer learning has been optimized due to its initial 
training on a large dataset, which makes it well-suited for 
smaller datasets like the one used here. The Inception V3 
model was chosen and trained using the Google Collab 
platform, primarily for its high-performance GPU 
capabilities, allowing for efficient processing of deep 
models like Inception V3. The model in this study consists 
of 312 layers, including Conv2D, Batch Normalization, 
Activation, Concatenate, Pooling, Flatten, and Dense 
layers[23].  

Image augmentation was applied using the Image 
Generator to enhance the model's performance[28]. This 
technique generates random variations of the training 
images, ensuring the model does not see the same image 
twice. Augmentation techniques like shear, zoom, width 
shift, height shift, and horizontal flip were employed to 
improve the model's generalization and reduce overfitting. 
Shear changes the image shape without altering its axis, 
zoom resizes it, shifts and moves it horizontally or 



vertically. At the same time, horizontal flips invert the 
image along the x-axis. 

The study further focused on tuning the dense layer, 
consisting of 204,804 parameters, and setting 
hyperparameters such as learning rate, batch size, epochs, 
and optimizer. These settings are crucial for controlling the 
learning process, influencing how quickly and accurately 
the model adapts. For instance, a batch size of 32 means 32 
samples is used to update the model's weights before 
making an adjustment. The model was fine-tuned and will 
be used in a prototype detection application, ensuring its 
robustness and effectiveness. The deep learning model was 
trained using the following hyperparameter configuration: 
2 epoch values (30 and 50 epochs), two learning rate values 
(0.0001 and 0.00001), 2 batch size values (16 and 32), and 
the RMSprop optimizer. The outcomes of the deep learning 
model evaluation, which achieved high accuracy and 
balanced findings, will be utilized to test the prototype 
application conducted on the elevator steel rope sample. 
The list of the hyperparameter was shown in table 1.  
 

Table 1. The list of hyperparameters that were employed 

No. Parameter Name Value 1 Value 2 

1 Learning Rate 0.0001 0.00001 

2 Batch Size 16 32 
3 Epochs 30 50 

4 Optimizer RMSprop - 

 
The model accuracy plot presents the accuracy for each 

epoch, enabling an assessment of potential overfitting 
relative to the dataset. The accuracy plot shows the training 
dataset's correct and total prediction ratio. These are shown 
in Fig. 4. Meanwhile, the loss plot depicts the loss value of 
the training data after each epoch. The optimization process 
aims to achieve the lowest possible loss value. None of the 
learning methods indicate underfitting. However, 
overfitting is observed in two methods: with a learning rate 
of 0.0001, batch size of 32 and 30 epochs (method 1), and 
with the same learning rate and batch size of 50 epochs 
(method 2). Both methods demonstrate fluctuations in 
accuracy and loss across epochs. Overfitting is also present 
in method 6, where the learning rate is 0.00001, the batch 
size is 64, and 50 epochs are used. In this case, overfitting 
becomes evident by the seventh epoch as the gap between 
training and validation accuracy and loss widens. In 
contrast, method 4 (learning rate 0.00001, batch size 32, 50 
epochs) reaches equilibrium, with the training and 
validation curves remaining nearly parallel after the 10th 
epoch. 
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 Fig. 4. The showing of curves for all of the methods 

 The evaluation metrics from the table indicate strong 
performance overall. The highest average recall is achieved 
using a learning rate of 0.00001, batch size of 32, and 50 
epochs, with a value of 0.90, indicating a low false negative 
rate. However, lower precision values of 0.84 and 0.85 in 
methods with a learning rate of 0.00001, batch size of 64, 
and 30 or 50 epochs suggest a higher rate of incorrect 
predictions. In the confusion matrix, for the label "broken," 
46 out of 50 instances were correctly classified, while four 
were misclassified as "normal." Similarly, for "Normal," 
only 37 were correctly identified, with misclassifications in 
other categories such as "Rust" and "Wear”. The optimal 
average is observed with the learning method LR = 
0.00001, BS = 32, and E = 50, achieving a value of 0.90. 
This result reflects a low false positive rate and robust 
model performance. In contrast, lower accuracy values 
were noted in the method LR = 0.00001, BS = 64, and E = 
30, signifying more incorrect predictions. Misclassification 
errors were observed for the labels "Broken," "Normal," 
"Rust," and "Wear," with total errors ranging between 7 
and 9. The result was presented in table 2.   



 The highest F1 score, 0.90, was also achieved using the 
learning method LR = 0.00001, BS = 32, and E = 50, 
indicating vital precision and recall. Further tuning was 
performed on the convolutional layer in the 2x Inception 
Module C to confirm these results. The tuning process 
involved identifying specific layers using Google Collab 
and freezing earlier layers during training. The final model 
contained 6,524,996 trained parameters, significantly 
increasing compared to the 204,804 parameters adjusted in 
the dense layer. 

 

Table 2. Metric Evaluation of The Proposed System 

 
 

The findings of this investigation have demonstrated 
that, under the conditions presented, the transfer learning 
parameters for the deep learning model designed to detect 
steel rope damage are optimized as follows: a learning rate 
of 0.00001, a batch size of 32, and 50 epochs. This 
configuration yielded the highest accuracy, achieving a 
value of 90%, along with superior evaluation metrics. The 
model exhibited strong generalization capabilities and 
robust performance across the dataset, indicating a well-
balanced fit. By fine-tuning these hyperparameters, the 
model successfully minimized overfitting and enhanced 
prediction accuracy, making it highly effective in detecting 
various types of damage[26], [27], [29]. 

V. CONCLUSION 
This study successfully developed a deep learning-

based model utilizing transfer learning for detecting 
surface defects in steel wire ropes on elevators. By 
leveraging the Inception V3 architecture and employing a 
dataset of 2,000 images across four distinct categories 
(normal, broken, worn, and rusted), the model achieved a 
high prediction accuracy of 90%. The results demonstrated 
the effectiveness of using transfer learning to reduce the 
training time and enhance the model’s predictive capability, 

particularly in smaller datasets. The hyperparameter tuning 
with a learning rate of 0.00001, batch size of 32, and 50 
epochs yielded optimal performance, minimizing 
overfitting while improving generalization. 

This approach not only ensures early detection of 
defects such as wear, fatigue, and corrosion but also 
provides actionable insights for maintenance, thereby 
enhancing elevator safety. The proposed system offers a 
reliable alternative to traditional visual inspections, 
reducing human error and increasing efficiency in safety-
critical environments. Future work could expand the 
dataset and explore more advanced neural network 
architectures to improve accuracy and real-time 
performance in industrial applications. The system's 
potential for broad adoption could revolutionize steel wire 
rope safety management in elevator systems. 
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